Interchange Documentation (Full)

Advanced Interchange Topics

Advanced Interchange Topics

1. Advanced Interchange Topics

» Maintaining production Interchange servers

« Interchange Administration Tool Development
» Making catalog skeletons for use with makecat
* Building custom link programs

1. Advanced Interchange Topics

2. Maintaining Interchange

Some utilities are supplied in the VendRoot/bin directory:

compile_link Compiles an Interchange vlink or tlink CGI link
configdump Dumps the configuration directives for a particular catalog
dump Dumps the session file for a particular catalog

expire Expires sessions for a particular catalog

expireall Expires all catalogs

makecat Make catalog

Some example scripts for other functions are in the eg/ directory of the software distribution.

Some thought should be given to where the databases, error logs, and session files should be located,
especially on an ISP that might have multiple users sharing an Interchange server. In particular, put all of th
session files and logs in a directory that is not writable by the user. This eliminates the possibility that the
catalog may crash if the directory or file is corrupted.

To test the format of user catalog configuration files before restarting the server, set (from VendRoot):
bin/interchange —test
This will check all configuration files for syntax errors, which might otherwise prevent a catalog from

booting. Once a catalog configures properly, user reconfiguration will not crash it. It will just cause an error.
But, it must come up when the server is started.

2.1. Starting, Stopping, and Re—starting the Servers

The following commands need to have VENDROOT changed to the main directory where Interchange is
installed. If the Interchange base directory is /homel/interchange/, the start command would be
/home/interchange/bin/interchange.

Do a perldoc VENDROOT/bin/interchange for full documentation.

To start the server with default settings:

VENDROOT/bin/interchange

Assuming the server starts correctly, the names of catalogs as they are configured will be displayed, along
with a message stating the process ID it is running under.

It is usually best to issue a restart instead. It doesn't hurt to do a restart if you're actually starting the first tim
And, if a server is already running (from this VENDROOT), a new start attempt will fail. To restart the server

VENDROOT/bin/interchange -restart
The —r option is the same as —restart.
This is typically done to force Interchange to re-read its configuration. A message will be displayed stating

that a TERM signal has been sent to the process ID the servers are running under. This information is also
sent to VENDROOT/error.log. Check the error.log file for confirmation that the server has restarted

2. Maintaining Interchange 3

Interchange Documentation (Full)

properly.
To stop the server:

VENDROOT/bin/interchange -stop

A message will be displayed stating that a TERM signal has been sent to the process ID the server is runnir
under. This information is also sent to VENDROOT/error.log.

Because processes waiting for selection on some operating systems block signals, they may have to wait fc
HouseKeeping seconds to stop. The default is 60.

To terminate the Interchange server with prejudice, in the event it will not stop:

VENDROOT/bin/interchange -kill

2.2. UNIX and INET modes

Both UNIX-domain and INET-domain sockets can be used for communication. INET domain sockets are
useful when more than one web server, connected via a local-area network (LAN), is used for accessing an
Interchange server.

Important note: When sending sensitive information like credit card numbers over a network, always ensure
that the data is secured by a firewall, or that the Interchange server runs on the same machine as any
SSL-based server used for encryption.

Use the —i and —u flags if you only want to use one communication method:

Start only in UNIX mode
VENDROOT/bin/interchange -r —u

Start only in INET mode
VENDROOT/bin/interchange -r —i

2.3. User Reconfiguration

The individual catalogs can be reconfigured by the user by running the [reconfig] support tag. This should be
protected by one of the several forms of Interchange authentication, preferably by HTTP basic authorization
See RemoteUser.

The command line can be reconfigured (as the Interchange user) with:
VENDROOT/bin/interchange -reconfig <catalog>
It is easy for the administrator to manually reconfigure a catalog. Interchange simply looks for a file

etc/reconfig (based in the Interchange software directory) at HouseKeeping time. If it finds a script
name that matches one of the catalogs, it will reconfigure that catalog.

2.2. UNIX and INET modes 4

Interchange Documentation (Full)

2.4. Expiring Sessions

If Interchange is using DBM capability to store the sessions, periodically expire old sessions to keep the
session database file from growing too large.

expire —c catalog

There is also an expireall script which reads all catalog entries in interchange.cfg and runs
expire on them. The expire script accepts a —r option which tells it to recover lost disk space.

On a UNIX server, add a crontab entry such as the following:

once a day at 4:40 am
40 4 *** perl /home/interchange/bin/expireall —r

Interchange will wait until the current transaction is finished before expiring, so this can be done at any time
without disabling web access. Any search paging files for the affected session (kept in ScratchDir) will be
removed as well.

If not running DBM sessions, use a Perl script to delete all files not modified in the last one or two days. The
following will work if given an argument of a session directory or session files:

#lperl
expire_sessions.pl —— delete files 2 days old or older

my @files;
my $dir;
foreach $dir (@ARGV) {
just push files on the list
if (-f $dir) { push @files, $_; next; }

next unless —d $dir;

get all the file names in the directory

opendir DIR, $dir or die "opendir $dir: $\n";

push @files, (map { "$dir/$_"} grep(! /M\.\.?$/, readdir DIR)) ;
}

for (@files) {
unless (-f$_) {
warn "skipping $_, not a file.\n";
next;

}
next unless -M $_ >=2;
unlink $_ or die "unlink $_: $!\n";

}
It would be run with a command invocation like:

perl expire_sessions.pl /home/you/catalogs/simple/session
Multiple directory names are acceptable, if there is more than one catalog.

This script can be adjusted as necessary. Refinements might include reading the file to "eval" the session
reference and expire only customers who are not members.

2.4. Expiring Sessions 5

Interchange Documentation (Full)

2.5. My session files change to owner root every day!

You have the expireall —r entry in the root crontab, and it should either be in the Interchange user crontab or
run as:

44 4 ** * su —c "[INTERCHANGE_ROOT/bin/expireall -r" INTERCHANGE_USERNAME

2.5. My session files change to owner root every day!

3. Interchange Components

Interchange components are merely portions of HTML/ITL that are included into pages within the site
depending on options set in the Admin Ul. The default component set includes the following:

best_horizontal
best_vertical

cart

cart_display
cart_tiny
category_vertical
cross_horizontal
cross_vertical
promo_horizontal
promo_vertical
random_horizontal
random_vertical
upsell_horizontal
upsell_vertical

3.1. Content —> Page Edit

The Interchange Admin Ul offers a page editor function that allows component definitions and options to be
modified for each page within the catalog.

3.1.1. Template

The choices for the Template drop—down are read from template definition files located in the
CATROOT/template directory. These files store the name and description of the template, as well as
components and options for the particular template.

To create a new template for use in the admin, it is best to copy an existing template definition to a new file
name and edit it's contents to suit. Once the catalog is reconfigured, the new choice will be visible within the
Content Page Editor admin function.

Each template option is looped through and a scratch is set using its same name and value.

ITL is used near the bottom of this file to set each option to default values before the page is displayed.

[set page_title][set]

[set page_banner][set]

[set members_only][set]
[set component_before][set]
[set component_after][set]
[set bgcolorl#FFFFFF[/set]

3.1.2. Page Title

Sets the title of the page which is synonymous with the html <title></title> code.

The following code within the template definition file is used to display this option within in the content
editor:

3. Interchange Components 7

Interchange Documentation (Full)

page_title: description: Page title
This code dynamically adds the title to the page:

<title>[scratch page_title]</title>
3.1.3. Page Banner

Sets a textual title for each page which is called by [either][scratch page_banner][or][scratch
page _title][/either] This results in the Page Banner being displayed if defined. Otherwise, the Page Title is
used.

3.1.4. Members Only

The members only function is handled by the following code within each template file:

[if scratch members_only]
[set members_only][/set]
[if Isession logged_in]
[set mv_successpage]@ @MV_PAGE@ @][/set]
[bounce page=login]
[/if]
[/if]

This code says if members only is set to yes and the visitor is logged in, display the page. Otherwise, redire
the visitor to the login page.

3.1.5. Break 1

This code causes a separation in the Content Editor between the next set of options. (A blue line)

3.1.6. Horizontal Before Component

This allows the inclusion of a defined component to be displayed before, or above, the page's content. It is
called with the following code within the LEFTRIGHT_TOP template:

[if scratch component_before]
[include file="templates/components/[scratch component_before]"]
[set component_before][/set]

[/if]
3.1.7. Horizontal After Component

This function allows the inclusion of a defined component to be displayed after or below the pages's content
It's called with the following code within the LEFTRIGHT_BOTTOM template:

[if scratch component_after]
[include file="templates/components/[scratch component_after]"]
[set component_after][/set]

[/if]

3.1.3. Page Banner 8

Interchange Documentation (Full)

3.1.8. Horizontal Item Width

This setting allows you to choose how many items the horizontal components display. For example, the
horizontal best sellers component uses this setting to randomly select the best sellers. Notice the default to
nothing is defined.

random="[either][scratch component_hsize][or]2[/either]"

3.1.9. Special Tag

This setting is only viable when a promotion is used for a horizontal component. It tells the promotional
component which rows to evaluate in the merchandising table for display within the component. This setting
normally corelates to the featured column of the merchandising table as follows:

[query arrayref=main
sql="
SELECT sku,timed_promotion,start_date,finish_date
FROM merchandising
WHERE featured = "[scratch hpromo_type]'

"l/query]
3.1.10. Before/After Banner

Allows a title for the horizontal components to be defined to displayed in a header above the component's
items. It is called with the [scratch hbanner] tag.

3.1.11. Break 2

This code causes a separation in the Content Editor between the next set of options. (A blue line)

3.1.12. Vertical Component

Defines a component to be displayed along the right side of the LEFTRIGHT_BOTTOM template. It is callec
from the template with the following code:

[include file="templates/components/[scratch component_right]"]

3.1.13. Vertical Items Height

Sets the number of items to display within the vertical component. Called with the following code:

random="[either][scratch component_vsize][or]3[/either]"

3.1.14. Right Banner

Allows a title to be set for a vertical component which is displayed as a header above the items in the vertice
component. It's called with the [scratch vbanner] tag.

3.1.8. Horizontal Item Width 9

Interchange Documentation (Full)

3.1.15. Special Tag

Essentially the same as the Special Tag setting described in item number 9 above.

3.1.16. Background Color

Allows the background color of the page to be selected. The choices are stored within the page or template
definition as in:

bgcolor:
options: #FFFFFF=White,pink=Pink
widget: select
description: Background color

3.1.17. Content

Allows the page code to be downloaded, uploaded and viewed/edited. Only the code between <!-- BEGIN
CONTENT ——> and <!-— END CONTENT —-> is displayed or can be edited here.

3.1.18. Preview, Save, and Cancel buttons

Allows the changes to the edited page to be previewed in a pop—up browser window, or saved. Cancel retur
you to the page editor selection page.

3.1.19. Save template in page

Template settings are stored in the template definitions by default. This allows a common set of choices for
template settings for all pages. If specific setting options are desired for a page, the template can be saved
within the page so that it may have individual options.

The in—page template definition must be surrounded by [comment] [[comment].

3.2. Custom Admin Ul Options

Other options may be added to the template by defining them in the default definition file, or using in—page
definitions.

When the following lines are added to the template definition, the new option is added to the Admin Ul.
option_name:
options: 1,2*,3
widget: select

description: Option Description
help: Other Details

Each time the template is used, an option_name scratch variable is created. (Called with: [scratch
option_name].) This scratch value will be equal to what's selected here in the admin tool.

The possible widgets include:
break — produces the blue line separator.

3.1.15. Special Tag 10

Interchange Documentation (Full)

radio — produces radio button type selections.
select — standard drop—down selector.
move_combo - select drop down with options and text input for new option.

3.1.15. Special Tag

11

4. Administrative Pages

With Interchange's GlobalSub capability, very complex add—on schemes can be implemented with Perl
subroutines. And with the new writable database, pages that modify the catalog data can be made. See
MasterHost, RemoteUser, and Password.

In addition, any Interchange page subdirectory can be protected from access by anyone except the
administrator if a file called '.access' is present and non-zero in size.

4.1. Controlling Access to Certain Pages

If the directory containing the page has a file .access and that file's size is zero bytes, access can be gated
in one of several ways.

1. If the file .access_gate is present, it will be read and scanned for page—based access. The file has
the form:

page: condition
*: condition

The page is the file name of the file to be controlled (the .html extension is optional). The condition is

either a literal Yes/No or Interchange tags which would produce a Yes or No (1/0 work just fine, as do
true/false).

The entry for * sets the default action if the page name is not found. If pages will be allowed by default, set if
to 1 or Yes. If pages are to be denied by default in this directory, leave blank or set to No. Here is an
example, for the directory controlled, having the following files:

—-rw—-rw—-r—— 1 mike mike 0Jan 8 14:19 .access
-rw—-rw-r—— 1 mike mike 185 Jan 8 16:00 .access_gate
—-rw-rw-r-— 1 mike mike 121 Jan 8 14:59 any.html
—-rw—-rw-r—— 1 mike mike 104 Jan 8 14:19 bar.html
—-rw—-rw-r—— 1 mike mike 104 Jan 8 14:19 baz.html
—-rw—-rw-r—— 1 mike mike 104 Jan 8 14:19 foo.html

The contents of .access_gate:

foo.html: [if session username eq ‘flycat’]
Yes
[/if]
bar: [if session username eq 'flycat’]
[or scratch allow_bar]
Yes
[/if]
baz: yes
*: [data session logged_in]

The page controlled/foo is only allowed for the logged—in user flycat.

The page controlled/bar is allowed for the logged-in user flycat, or if the scratch variable

allow_bar is set to a non-blank, non-zero value.

The page controlled/baz is always allowed for display.

The page controlled/any (or any other page in the directory not named in .access_gate) will be
allowed for any user logged in via UserDB. NOTE: The .access_gate scheme is available for database

4. Administrative Pages 12

Interchange Documentation (Full)

access checking if the database is defined as an AdminDatabase. The .access_gate file is located in
ProductDir.

1. If the Variable MV_USERDB_REMOTE_USER is set (non-zero and non-blank), any user logged in
via the UserDB feature will receive access to all pages in the directory. NOTE: If there is a
.access_gate file, it overrides this.

2. If the variables MV_USERDB_ACL_TABLE is set to a valid database identifier, the UserDB module
can control access with simple ACL logic. See USER DATABASE. NOTE: If there is a
.access_gate file, it overrides this. Also, if MV_USERDB_REMOTE_USER is set, this capability
is not available.

4.2. display tag and mv_metadata

Interchange can store meta information for selected columns of tables in a site's database. This meta
information is used when the user interacts with the database. For example, the meta informaton for a Hide
Item field might specify that a checkbox be displayed when the user edits that field, since the only
reasonable values are on and off. Or, the meta information might specify a filter on data entered for a
Filename field which makes sure that the characters entered are safe for use in a filename.

Widget type specifies the HTML INPUT tag type to use when displaying the field in, say, the item editor.
Width and Height only apply to some of the Widget type options, for instance the Textarea widget.

Label is displayed instead of the internal column name. For example, the category column of the
products table might have a label of Product Category.

Help is displayed below the column label, and helps describe the purpose of the field to the user.

Help url can be used to link to a page giving more information on the field.

Lookup can be used when a field is acting like a foreign key into another table. In that case, use some sort ¢
select box as the widget type, and if referencing multiple rows in the destination table, use a multi select box

with colons_to_null as the pre_filter, and :: as the lookup_exclude.

Filter and pre_filter can be used to filter data destined for that field or data read from that field,
respectively.

Repeat?: The Interchange back office Ul uses the mv_metadata table to discover formatting information for
field, table, and view display. The information is kept in fields in the mv_metadata table, and is used to selec
the display, the HTML input type, the size (height and width where appropriate), label, help text, additional
help URL, and default value display.

It works in conjunction with the [display ...] usertag defined in the Interchange Ul as well as in specific pages
in the Ul. The [display] tag has this syntax:

[display table=tablename column=fieldname key=key arbitrary=tag filter=op ...]
In the simplest use, the formatting information for a table form field is called with:

[display table=products column=category key="0s28007"]

4.2. display tag and mv_metadata 13

Interchange Documentation (Full)

The mv_metadata table is scanned for the following keys:

products::category::0s28007
products::category

If a row is found with one of those keys, then the information in the row is used to set the display widget. If
no row is found, an INPUT TYPE=TEXT widget is displayed. If the data is all digits, a size of 8 is used,
otherwise the size is 60.

If the following row were found (not all fields shown, would be tab—-separated in the actual data):

code type width height label options
products::category text 20 Category

Then this would be output:
<INPUT TYPE=text SIZE=20 VALUE="*category*">
If the following row were found:

code type width height label options
products::category select Category =none, product=Hardware

Then the following would be output:

<SELECT NAME=category>

<OPTION VALUE="">none

<OPTION VALUE="product">Hardware
</SELECT>

The standard widget types are:

text

The default. Uses the fields:
width size of input box

textarea

Format a <TEXTAREA> </TEXTAREA> pair. Uses the fields:

width COLS for textarea
height ROWS for textarea

select

Format a <SELECT> </SELECT> pair with appropriate options. Uses the fields:

height SIZE for select

default Default for SELECTED

options Options for a fixed list (or prepended to a lookup)
lookup signals a lookup (used as field name if "field" empty)
field field to look up possible values in

4.2. display tag and mv_metadata 14

Interchange Documentation (Full)

db table to look up in if not current table
lookup_exclude regular expression to exclude certain values from lookup

4.2. display tag and mv_metadata

15

5. Usertag Reference

Admin Tool-specific usertags.

5. Usertag Reference

16

6. Admin Tool Database Tables

6.1. icmenu.txt

Used for back—office administration Ul menus and wizards.

code
Arbitrary primary key
mgroup
Menu group (for grouping searches)
msort
Sort order within the group
next_line
Set to 1 if submenu
indicator
exclude_on
depends_on
page
form
name
super
inactive
special
help_name
img_dn
img_up
img_sel
img_icon
url

6.2. mv_metadata.asc

code
Table::Column to be operated on.
Database table
type

Widget type (Select the basic display type for the field)
textarea = Textarea
text = Text Entry (default)
select = Select Box
yesno = Yes/No (Yes=1)
noyes = No/Yes (No=1)
multiple = Multiple Select
combo = Combo Select
reverse_combo = Reverse Combo
move_combo = Combo move
display = Text of option
hidden_text = Hidden(show text)
radio = Radio box
radio_nbsp = Radio (nbsp)
checkbox = Checkbox
check_nbsp = Checkbox (nbsp)
imagedir = Image listing
imagehelper = Image upload
date = Date selector
value = Value
option_format = Option formatter
show = Show all options

6. Admin Tool Database Tables

Interchange Documentation (Full)

width
Width (SIZE for TEXT, COLS for TEXTAREA, Label limit for SELECT)
height
Height (SIZE for SELECT, ROWS for TEXTAREA)
field
Field for lookup (can be two comma separated fields, in which case
second is used as the label text. Both must be in the same table.)
db
name
Variable name (normally left empty, changes variable name to send in
form)
outboard
Select directory for image listing widget
options
options in the format <blockquote>value=label*</blockquote>
attribute
Column name (Do not set this.)
label
help
Help (displays at top of page)
lookup
Lookup select (Whether lookup is performed to get options for a select
type. If nothing is in the field, then used as the name of the field
to lookup in. Use lookup table if you want to look up in a different
table.
filter
Filters (Filters which can transform or constrain your data. Some
widgets require filters.)
help_url
Help URL (links below help text)
A URL which will provide more help
pre_filter
lookup_exclude
ADVANCED: regular expression that excludes certain keys from the lookup
prepend
append
Append HTML (HTML to be appended to the widget. Will substitute in the
macros _UI_TABLE_, _UI_COLUMN_, _UI_KEY_, and _UI_VALUE_, and will
resolve relative links with absolute links.)
display_filter

6. Admin Tool Database Tables

18

7. makecat — Set Up a Catalog from a Template

After Interchange is installed, you need to set up at least one catalog. Interchange will not function properly
until a catalog is created.

The supplied makecat script, which is in the Interchange program directory bin, is designed to set up a
catalog based on the user's server configuration. It interrogates the user for parameters like which directorie
to use, a URL to base the catalog in, HTTP server definitions, and file ownership. It gives relevant examples
of the entries it expects to receive.

Note: A catalog can only be created once. All further configuration is done by editing the files within the
catalog directory.

The makecat script requires a catalog skeleton to work from. The Foundation demo is distributed with
Interchange. See the icfoundation document for information on building the Foundation demo store. Other
demo catalogs are available at http://interchange.redhat.com/.

It is not normally necessary for you to understand how to build catalog skeletons for use with makecat, but tl
following information will help you if you should ever need to.

7.1. Catalog Skeletons

A catalog skeleton contains an image of a configured catalog. The best way to see what the makecat progre
does is to configure the simple demo and then run a recursive diff on the template and configured catalog
directories:

cd /usr/local/interchange
diff —r construct catalogs/construct

The files are mostly identical, except that certain macro strings have been replaced with the answers given 1
the script. For example, if www.mydomain.com was answered at the prompt for a server name, this
difference would appear in the catalog.cfg file:

template
Variable SERVER_NAME __ MVC_SERVERNAME_

configured catalog
Variable SERVER_NAME www.mydomain.com

The macro string __ MVC_SERVERNAME___ was substituted with the answer to the question about server
name. In the same way, other variables are substituted, and include:

MVC_BASEDIR MVC_IMAGEDIR
MVC_CATROOT MVC_IMAGEURL
MVC_CATUSER MVC_MAILORDERTO
MVC_CGIBASE MVC_MINIVENDGROUP
MVC_CGIDIR MVC_MINIVENDUSER
MVC_CGIURL MVC_SAMPLEHTML
MVC_DEMOTYPE MVC_SAMPLEURL
MVC_DOCUMENTROOT MVC_VENDROOT
MVC_ENCRYPTOR

7. makecat — Set Up a Catalog from a Template 19

Interchange Documentation (Full)

Note: Not all of these variables are present in the "construct" template, and more may be defined. In fact, ar
environment variable that is set and begins with MVC_ will be substituted for by the makecat script. For
example, to set up a configurable parameter to customize the COMPANY variable in catalog.cfg, run a
pre—qualifying script that set the environment variable MVC_COMPANY and then place in the catalog.cfg
file:

Variable COMPANY __MVC_COMPANY_

All files within a template directory are substituted for macros, not just the catalog.cfg file. There are two
special directories named html and images. These will be recursively copied to the directories defined as
SampleHTML and ImageDir.

Note: The template directory is located in the Interchange software directory, i.e., where

interchange.cfg resides. Avoid editing files in the template directory. To create a new template, it is
recommended that it should be named something besides ‘construct' and a copy of the construct demo
directory be used as a starting point. Templates are normally placed in the Interchange base directory, but c
be located anywhere. The script will prompt for the location if it cannot find a template.

In addition to the standard parameters prompted for by Interchange, and the standard catalog creation
procedure, four other files in the config directory of the template may be defined:

additional_fields —- file with more parameters for macro substitution
additional_help —- extended description for the additional_fields
precopy_commands —- commands passed to the system prior to catalog copy
postcopy_commands —— commands passed to the system after catalog copy

All files are paragraph—based. In other words, a blank line (with no spaces) terminates the individual setting

The additional_fields file contains:

PARAM
The prompt. Set PARAM to?
The default value of PARAM

This would cause a question during makecat:
The prompt. Set PARAM to?.....[The default value of PARAM]
If the additional_help file is present, additional instructions for PARAM may be provided.

PARAM

These are additional instructions for PARAM, and they
may span multiple lines up to the first blank line.

The prompt would now be:

These are additional instructions for PARAM, and they
may span multiple lines up to the first blank line.

The prompt. Set PARAM to?.....[The default value of PARAM]

If the file config/precopy_commands exists, it will be read as a command followed by the prompt/help value.

7. makecat — Set Up a Catalog from a Template 20

Interchange Documentation (Full)

mysgladmin create _ MVC_CATALOGNAME___
We need to create an SQL database for your Interchange
database tables.

This will cause the prompt:

We need to create an SQL database for your Interchange
database tables.

Run command "mysqgladmin create simple"?

If the response is "y" or "yes," the command will be run by passing it through the Perl system() function. As
with any of the additional configuration files, MVC_PARAM macro substitution is performed on the
command and help. Proper permissions for the command are required.

The file config/postcopy_commands is exactly the same as <precopy_commands>, except the prompt occu
after the catalog files are copied and macro substitution is performed on all files.

There may also be SubCatalog directives:
SubCatalog easy simple /home/catalogs/simple /cgi-bin/easy
easy

The name of the subcatalog, which also controls the name of the subcatalog configuration file. In this case,
is easy.cfg.

simple

The name of the base configuration that will be the basis for the catalog. Parameters in the easy.cfg file that
are different will override those in the catalog.cfg file for the base configuration.

The remaining parameters are similar to the Catalog directive.

Additional interchange.cfg parameters set up administrative parameters that are catalog wide. See the serve
configuration file for details on each of these.

Each catalog can be completely independent with different databases, or catalogs can share pages, databa
and session files. This means that several catalogs can share the same information, allowing "virtual malls."

7.2. Manual Installation of Catalogs

An Interchange installation is complex, and requires quite a few distinct steps. Normally you will want to use
the interactive catalog builder, makecat, described above. It makes the process much easier. Please see th
iccattut document for a full tutorial on building a catalog by hand.

7.2. Manual Installation of Catalogs 21

8. Link Programs

Interchange requires a web server that is already installed on a system. It does have an internal server whic
can be used for administration, testing, and maintenance, but this will not be useful or desireable in a
production environment.

As detailed previously, Interchange is always running in the background as a daemon, or resident program.
monitors either a UNIX-domain file—based socket or a series of INET-domain sockets. The small CGlI link
program, called in the demo simple, is run to connect to one of those sockets and provide the link to a
browser.

Note: Since Apache is the most popular web server, these instructions will focus on it. If using another type |
web server, some translation of terms may be necessary.

A ScriptAlias or other CGI execution capability is needed to use the link program. (The default
ScriptAlias for many web servers is /cgi—bin.) If ExecCGl is set for all directories, then any
program ending in a particular file suffix (usually .cgi) will be seen as a CGI program.

Interchange, by convention, names the link program the same name as the catalog ID, though this is not
required. In the distribution demo, this would yield a program name or SCRIPT_PATH of

/cgi—bin/simple or /simple.cgi. This SCRIPT_PATH can be used to determine which Interchange

catalog will be used when the link program is accessed.

8.1. UNIX-Domain Sockets

This is a socket which is not reachable from the Internet directly, but which must come from a request on the
server. The link program vlink is the provided facility for such communication with Interchange. This is the
most secure way to run a catalog, for there is no way for systems on the Internet to interact with Interchange
except through its link program.

The most important issue with UNIX—domain sockets on Interchange is the permissions with which the CGI
program and the Interchange server run. To improve security, Interchange normally runs with the socket file
having 0600 permissions (rw———-———), which mandates that the CGI program and the server run as the sat
user ID. This means that the vlink program must be SUID to the same user ID as the server executes under
(Or that CGIWRAP is used on a single catalog system).

With Interchange's multiple catalog capability, the permissions situation gets a bit tricky. Interchange comes
with a program, makecat, which configures catalogs for a multiple catalog system. It should properly set up
ownership and permissions for multiple users if run as the superuser.

8.2. INET-Domain Sockets

These are sockets which are reachable from the Internet directly. The link program tlink is the provided
facility for such communication with Interchange. Other browsers can talk to the socket directly if mapped to
a catalog with the global TcpMap directive. To improve security, Interchange usually checks that the reques
comes from one of a limited number of systems, defined in the global TcpHost directive. (This check is not
made for the internal HTTP server.)

8. Link Programs 22

Interchange Documentation (Full)

8.3. Internal HTTP Server

If the socket is contacted directly (only for INET-domain sockets), Interchange will perform the HTTP servel
function itself, talking directly to the browser. It can monitor any number of ports and map them to a
particular catalog. By default, it only maps the special catalog mv_admin, which performs administrative
functions. The default port is 7786, which is the default compiled into the distribution tlink program. This port
can be changed via the TcpMap directive.

To prevent catalogs that do not wish access to be made in this way from being served from the internal serv

Interchange has a fixed SCRIPT_PATH of /catalogname (/simple for the distribution demo) which needs
to be placed as an alias in the Catalog directive to enable access. See TcpMap for more details.

8.4. Setting Up VLINK and TLINK

The vlink and tlink programs, compiled from vlink.c and tlink.c, are small C programs which

contact and interface to a running Interchange daemon. The VLINK executable is normally made setuid to t
user account which runs Interchange, so that the UNIX-domain socket file can be set to secure permissions
(user read—write only). It is normally not necessary for the user to do anything. They will be compiled by the
configuration program. If the Interchange daemon is not running, either of the programs will display a
message indicating that the server is not available. The following defines in the produced config.h should
be set:

LINK_FILE

Set this to the name of the socket file that will be used for configuration, usually
"lusr/local/lib/interchange/etc/socket" or the "etc/socket” under the directory chosen for the VendRoot.

LINK_HOST

Set this to the IP number of the host which should be contacted. The default of 127.0.0.1 (the local machine
is probably best for many installations.

LINK_PORT

Set this to the TCP port number that the Interchange server will monitor. The default is 7786 (the decimal
ASCII codes for 'M' and 'V') and does not normally need to be changed.

LINK_TIMEOUT

Set this to the number of seconds vlink or tlink should wait before announcing that the Interchange
server is not running. The default of 45 is probably a reasonable value.

8.5. Compiling VLINK and TLINK

There is a compile_link program which will assist with this. Do:

perldoc VENDROOT/bin/compile_link

for its documentation.

8.3. Internal HTTP Server 23

Interchange Documentation (Full)

8.6. Manually Compiling VLINK and TLINK

Change directories to the src directory, then run the GNU configure script:

cd src
Jconfigure

There will be some output displayed as the configure script checks the system. Then, compile the programs
perl compile.pl
To compile manually:

cc vlink.c —o vlink
cc tlink.c —o tlink

On manual compiles, ensure that the C compiler will be invoked properly with this little ditty:

perl —e 'do "syscfg"; system("$CC $LIBS $CFLAGS $DEFS -o tlink tlink.c");'
perl —e 'do "syscfg"; system("$CC $LIBS $CFLAGS $DEFS —o vlink vlink.c");'

On some systems, the executable can be made smaller with the strip program, if available. It is not required

strip vlink
strip tlink

If Interchange is to run under a different user account than the individual configuring the program, make that

user the owner of vlink. Do not make vlink owned by root, because making vlink SETUID root is an
huge and unnecessary security risk. It should also not normally run as the default Web user (often nobody ©

http)).

chown interchange vlink

Move the vlink executable to the cgi—bin directory:
mv vlink /the/cgi—bin/directory
Make vlink SETUID:
chmod u+s /the/cgi—bin/directory/vlink
Most systems unset the SUID bit when moving the file, so change it after moving.

The SCRIPT_NAME, as produced by the HTTP server, must match the name of the program. (As usual, let
the makecat program do the work.)

8.7. VLINK or TLINK Compile Problems

The latest version of vlink.c and tlink.c have been compiled on the following systems:

AlX 4.1
BSD2.0 (Pentium/x86)

8.6. Manually Compiling VLINK and TLINK 24

Interchange Documentation (Full)

Debian GNU/Linux

Digital Unix (OSF/Alpha)

FreeBSD 2.x, 3.X, 4.X

IRIX 5.3, IRIX 6.1

OpenBSD 2.7

Red Hat Linux 6.2, 7.0, 7.1

SCO OpenServer 5.x

Solaris 2.x (Sun compiler and GCC)
Solaris 7 (Sun compiler and GCC)
Sun0S 4.1.4

Some problems may occur. In general, ignore warnings about pointers.

Make sure that you have run the configure program in the src directory. If you use Interchange's makecat
program, it will try to compile an appropriate link at that time, and will substitute tlink.pl if that doesn't work.

You can compile manually with the proper settings with this series of commands:

cd src

Jconfigure

perl —e 'do "syscfg"; system ("$CC $CFLAGS $DEFS $LIBS -o tlink tlink.c")'
perl —e 'do "syscfg"; system ("$CC $CFLAGS $DEFS $LIBS —o vlink vlink.c")'

There is also a compile_link program which has docmentation embedded and which will compile an
approprate link. If you cannot compile, try using the tlink.pl script, written in Perl instead of C, which

should work on most any system. Since vlink needs to have values set before compilation, a pre-compiled
version will not work unless it has the exact values you need on your system. If you can use the defaults of
'localhost' and port 7786, you may be in luck.

8.6. Manually Compiling VLINK and TLINK 25

9. Installing Perl Modules without Root Access

Installing Interchange without root access is no problem. However, installing Perl modules without root
access is a little trickier.

You must build your makefile to work in your home dir. Something like:

PREFIX=~/usr/local \
INSTALLPRIVLIB=~/usr/local/lib/perl5 \
INSTALLSCRIPT=~/usr/local/bin \
INSTALLSITELIB=~/ustr/local/lib/perl5/site_perl \
INSTALLBIN=~/usr/local/bin \
INSTALLMAN1DIR=~/usr/local/lib/perl5/man \
INSTALLMAN3DIR=~/ustr/local/lib/perl5/man/man3

Put this in a file, say 'installopts', and use it for the Makefile.PL.
perl Makefile.PL “cat installopts’
Then, forget ./config. Just do:

make
make test
make install

Some of the tests may fail, but that's probably ok.

Also make sure to install Bundle::Interchange, which will need the same config data as you put into
'installopts'.

9. Installing Perl Modules without Root Access 26

10. Installation Troubleshooting

Interchange uses the services of other complex programs, such as Perl, Web servers, and relational databa
to work. Therefore, when there is a problem, check these programs before checking Interchange. Many mot
basic installation problems have to do with those than with Interchange itself.

If an error message is received about not being able to find libraries, or a core dump has occurred, or a
segment fault message, it is always an improperly built or configured Perl. Contact the system administrator
or install a new Perl.

The makecat program is intended to be used to create the starting point for the catalog. If the demo does nc
work the first time, keep trying. If it still does not work, try running in INET mode.

Check the two error log files: error.log in the Interchange home directory (where interchange.cfg resides)
and error.log in the catalog directory (where catalog.cfg resides; there can be many of these). Many
problems can be diagnosed quickly if these error logs are consulted.

Check the README file, the FAQ, and mail list archive at the official Interchange web site for information:

http://interchange.redhat.com/
Double check the following items:

1. Using UNIX sockets?
¢ Check that the vlink program is SUID, or the appropriate changes have been made in the
SocketPerms directive. Unless the files are world—writable, the vlink program and the
Interchange server must run as the same user ID! If running CGI-WRAP or SUEXEC, the
vlink program must not be SUID.
¢ If having trouble with the vlink program (named construct in the demo configuration), try
re—-running makecat and using INET mode instead. (Or copy the tlink INET mode link
program over vlink). This should work unchanged for many systems.
¢ If using an ISP or have a non-standard network configuration, some changes to
interchange.cfg are necessary. For tlink to work, the proper host name(s) must be
configured into the TcpHost directive in interchange.cfg. The program selects port 7786 by
default (the ASCII codes for "M" and "V"). If another port is used, it must be set to the same
number in both the tlink program (by running compile_link) and the minivend.cfg
file. The tlink program does not need to be SUID.
2. Proper file permissions?
¢ The Interchange server should not run as the user nobody! The program files can be owned
by anyone, but any databases, ASCII database source files, error logs, and the directory that
holds them must be writable by the proper user ID, that is the one that is executing the
MiniVend program.
¢ The best way to operate in multi-user, multiple catalog setups is to create a special interch
user, then put that user in the group that contains each catalog user. If a group is defined for
each individual user, this provides the best security. All associated files can be in 660 or 770
mode. There should be no problems with permissions and no problems with security.
3. Is the vlink program being executed on a machine that has the socket file etc/socket on a
directly attached disk?
¢ UNIX-domain sockets will not work on NFS—mounted file systems! This means that the
server minivend and the CGI program vlink must be executing on the same machine.

10. Installation Troubleshooting 27

Interchange Documentation (Full)

¢ The tlink program does not have this problem, but it must have the proper host name(s)
and TCP ports set in the TcpHost and TcpPort directives in interchange.cfg. Also, be
careful of security if sensitive information, like customer credit card numbers, is being placed
on a network wire. line:

10. Installation Troubleshooting 28

Catalog—Building Tutorial

Catalog—Building Tutorial

29

11. Purpose

The purpose of this document is to guide you through constructing a simple Interchange catalog from scratc
The demo catalog that ships with Interchange is quite complex since it highlights some of the many
capabilities that Interchange offers. As a template for your own catalog, the demos can either be an
intimidating place to start or too customized to relate to your business.

The simple catalog you create using this tutorial should give you a feel for the basic Interchange system. It
should also be considered a stepping stone to a more complete and functional e-~commerce system built wi
Interchange. The tutorial relies as much as possible on default settings to accentuate how Interchange work
It will use as few of Interchange's capabilities as possible, while still building a usable store. The resulting sif
will be simple but usable. The value of this tutorial is not in the resulting e-commerce site, but in the
instruction that occurs along the way.

It is recommended that you create the files used in this tutorial yourself. You will learn more by creating the

directory structure and using your favorite text editor to create files in the proper places on your own system
as they are discussed.

11. Purpose 30

12. Before you begin

This section explains the initial set up tasks that must be completed before you can begin building your simg
e—-commerce site.

12.1. Install Interchange and the demo catalog

The easiest way to get Interchange and the demo set up is through an RPM install on the Red Hat Linux or
Linux Mandrake operating systems. You can also get Interchange by unpacking an Interchange tarball or
checking out a copy of the CVS repository and doing a manual installation. These installations can be done
either as a regular user or as root with a special Interchange user.

You must also know what type of installation you ran so you know where to place the various files created.
Before proceeding, verify that Interchange is properly installed. Also, which type of installation you ran:

* RPM (Red Hat Package Manager) install
» Manual install as root
« Manual install as regular user

Note: After installation, makecat should be run to build your catalog. For information on installing
Interchange and building your catalog using makecat, see the Red Hat Interchange 4.8: Getting Started
Guide. Do not to continue with this tutorial without a working demo catalog.

Installing the demo catalog set up the Interchange global configuration file interchange.cfg, which
resides in the Interchange software directory. Also, it compiled the link program for your specific server and
placed the executable program in your cgi—bin directory. This is necessary for your catalog to run properly.

12.2. The Interchange operating system user

If Interchange was installed as a regular user, that will be the user Interchange runs as. If Interchange was
installed as root or from an RPM, you need to know the name of the separate Interchange user. The
Interchange daemon will not run as root, or even as the web server user (often www or httpd or nobody). If
Interchange was installed from the RPM, or with the default source installation settings, the default usernam
is interch. If a different user name was established, you will need to know what it is.

12.3. Important directories

In order to complete this tutorial you will need to know the location of each of the following directories and
have write permissions on them:

* Interchange software directory .RPM install: /usr/lib/interchange .Manual install as root:
{/usr/locall/interchange .Manual install as regular user: /lhome/username/interchange

 Catalogs directory .RPM install: /var/lib/interchange .Manual install as root:
lusr/locall/interchange/catalogs .Manual install as regular user: /home/username/catalogs

* cgi—bin directory .RPM install or source install as root (Red Hat 6, Linux Mandrake):
/home/httpd/cgi—bin .RPM install or source install as root (Red Hat 7): /var/www/cgi—bin
.Manual install as root (locally installed web server): /ust/local/htdocs, /opt/www,Manual
install as regular user: /home/username/public_html (with .cgi extension)

12. Before you begin 31

Interchange Documentation (Full)

Note: The installation of Interchange is very flexible and the file locations on your system may vary,
depending on how your system was set up. It is recommended that you not proceed until you are sure you
have this information and the necessary permissions to write to these directories.

12.4. Your catalog URL

Finally, you need to know the URL to access your store from a web browser. Again, this can vary depending
on how your web server has been set up. But, assuming a common setup of the Apache web server, your U
should be one of the following:

* Root or RPM install: http://localhost/cgi—bin/tutorial/pagename
« Manual install as user:http://localhost/~username/tutorial.cgi/pagename

If you aren't running your web browser on the server where Interchange is running, you need to substitute
your server's host name (for example: machine.domain.com for localhost) where mentioned.

Note: It is recommended that you use the real machine name instead of localhost. The standard for cookies
specifies that they can only be set when a domain name has at least two dots in it. If you use localhost, you
will lose session information if you leave catalog, since the session ID is passed only as part of the URL.

12.5. Starting or restarting Interchange

When you make changes to the configuration files you need to restart the Interchange server. How this is dc
depends on how you installed Interchange:

« RPM install as root: /usr/sbin/interchange -r
« Manual install as Interchange user:/ustr/local/interchange/bin/interchange -r
* Manual install as root: su interch —c
'lusr/local/interchange/bin/interchange —r'
« Manual install as regular user:~/interchange/bin/interchange —r

Find the right command for your system and remember it, since you will need to restart Interchange a few
times during the tutorial.

12.6. Tutorial assumptions

Because it is impossible to cover all senarios, this tutorial assumes that you installed Interchange on Red H:
from the RPM. This creates the following settings:

« Interchange software directory: /usr/lib/interchange

« Catalogs directory: /var/lib/interchange

« cgi—bin directory: /var/www/cgi—bin

« Interchange user: interch

« Demo catalog name: foundation

« Demo catalog URL base: http://localhost/cgi—bin/foundation
« Tutorial catalog name: tutorial

« Tutorial catalog URL base: http://localhost/cgi—bin/tutorial

12.4. Your catalog URL 32

Interchange Documentation (Full)

« Tutorial catalog directory: /var/lib/interchange/tutorial

If you did not install with these settings, substitute the correct values for your system when these settings ar
mentioned in the tutorial.

12.4. Your catalog URL 33

13. Building Your Catalog

This section describes the pages and directories that need to be established to create a properly functioning
catalog.

13.1. Create the link program

You need to make a copy of the demo link program in your cgi—bin directory and name it tutorial.

The demo link program has the same name as your demo catalog, usually foundation. The link program
links the Interchange daemon with your web server. Make sure that it has the same owner and file permissic
as the one you copied from. The set-UID bit is especially (unless you installed as a regular user). Normally
you will need to be root to have write permissions in the cgi—bin directory.

Type this command as root while in your cgi—bin directory:
cp —p foundation tutorial

If everything is working correctly, typing Is —I should describe your files roughly like this:

—rwsr—xr=x 1 interch interch 7708 Dec 16 22:47 foundation
—rwsr—xr=x 1 interch interch 7708 Dec 16 22:47 tutorial

13.2. Create the tutorial catalog directory

As root, create a subdirectory named tutorial under your catalogs directory (probably

Ivar/lib/interchange/). This is where all of the catalog—specific files will go. It needs to be readable,

writable, and executable by the Interchange user. This will be referred to as your catalog directory. Type the
following while in the catalogs directory to create the tutorial subdirectory:

mkdir tutorial
chown interch.interch tutorial
chmod 770 tutorial

13.3. Become the Interchange user

You should be able to do everything you need to do as the 'interch' user for the rest of this tutorial. So you ¢
switch to that user now (su interch). If you installed Interchange from the RPM, the user interch

probably doesn't have a password. You'll have to set it with a command such as passwd interch while

root.

13.4. Go to the tutorial catalog directory

Change to the catalog directory with the 'cd' command. For the rest of this tutorial, all file locations will be
given relative to the tutorial catalog directory. For example, pages/ord/basket.html would actually be
Ivar/lib/interchange/tutorial/pages/ord/basket.html or the equivalent on your system.

The only exception is interchange.cfg, which is in the Interchange software directory.

13. Building Your Catalog 34

Interchange Documentation (Full)

Note: To improve clarity, we will append a trailing slash to directory names to clearly distinguish them from
file names. (Similar to the output of the Is command with the —F option.)

13.5. Create the session directory

You need to create the session directory where Interchange saves information on each visitor's browsing
session. If you do not have this directory, Interchange may fail to work. This directory is called session/
and goes under your catalog directory. Type mkdir session to create this directory.

13.5. Create the session directory 35

14. Configuration files

Interchange configuration is controlled by a number of directives, which are specified in two files. Global
configuration directives go in interchange.cfg in the Interchange software directory. Catalog-specific
configuration directives go in catalog.cfg in the catalog directory.

A complete directive consists of the directive name followed by whitespace—separated parameters. Any
number of spaces or tabs can be between the directive and its options, but the directive and its options mus
on the same line. The directive is case-insensitive, but it is recommended that you use it consistently for
readability.

You can insert blank lines or comment lines (lines where the first non—blank character is '#') throughout the
configuration files to improve readability. The order the lines appear in is significant, but unimportant for the
simple catalog you are creating.

For the next part, access your text editor (for example, vi, emacs, pico, joe, gedit, or nedit) to start editing
some files.

14.1. interchange.cfg

The first directive we need to use is a global directive that tells Interchange where the new catalog is, called
Catalog. The Catalog directive has the following format:

Catalog name catalog_base_directory link_url_path

Open interchange.cfg in the Interchange software directory. Go near the top of the file, right below the
other Catalog directives, and add this line:

Catalog tutorial /var/lib/interchange/tutorial /cgi—bin/tutorial

Save the file.

14.2. catalog.cfg

For the rest of the tutorial, most of the files mentioned do not exist yet. You will create them yourself with
initial text we give.

You need to create a catalog.cfg file for your tutorial store (in the tutorial catalog directory). We'll start
with a very simple products database table with a few fields and a few products.

The Database directive describes a database table to the Interchange system in this format:

Database name filename format

Interchange has several database options available. We will use the simplest, which is the built—in default
(specifically, some variant of DBM). The default location for filename is in a subdirectory called products
under the catalog directory. Interchange recongnizes a humber of file formats. We will use a tab—delimited
text file. Enter the following into catalog.cfg:

Database products products.txt TAB

14. Configuration files 36

Interchange Documentation (Full)

This tells Interchange that you have a database table named 'products' that is described in a tab—delimited f
named products.txt. You can describe an unlimited number of arbitrary database tables for the system to
use this way. Interchange is an e-commerce system and it expects at least a products database table. You
specify all of the database tables that contain products by using the ProductFiles directive. There is no defal
for this, so you will have to specify your products database by adding the following line to catalog.cfg:

ProductFiles products

There are a few other directives that Interchange expects to see in order to complete the minimum
configuration. They are VendURL, SecureURL, and MailOrderTo. They are, respectively, your catalog's
base URL, its secure URL, and the e-mail address to mail order notices to. Add the following lines to
catalog.cfg to establish these directives:

VendURL http://localhost/cgi—bin/tutorial
SecureURL http://localhost/cgi—bin/tutorial
MailOrderTo your@email.address

The catalog.cfg file should look like this when you save it:

Database products products.txt TAB
ProductFiles products

VendURL http://localhost/cgi—bin/tutorial
SecureURL http://localhost/cgi—bin/tutorial
MailOrderTo your@email.address

14. Configuration files 37

15. The products database table

15.1. products/products.txt

Create the products/ directory in your tutorial catalog directory.

The products/products.txt file will serve two purposes. It will provide Interchange with the layout of

the products database table and it will also provide the data. When Interchange parses the products.txt file,

will expect the first line to contain the names of the fields for the database table (for example, sku, descriptic
price). The first field in the list is expected to be a primary key (unique identifier) for that row. In most cases

you are going to use the SKU (stock keeping unit) as the unique identifier for each product.

The product database is handled as a special case since Interchange expects at least the description, price
product ID (sku) fields. In other words, the products.txt file must at least contain fields named sku,
price, and description. Any other fields you decide to include are handled normally.

The simple store that we are going to build will sell tests. You can choose another sample product line, but i
is recommended that you keep it simple. Create the file products/products.txt to look like this, with
a single tab separating each field:

sku description price

4595 Nice Bio Test 275.45

2623 Stack of Econ Quizzes 1.24

0198 Really Hard Physics Test 1589.34
1299 Ubiquitous diff eq final 37.00

Note: When using tab—delimited files as we are, make sure you have exactly one tab between each field.
Some text editors will use spaces to simulate tabs. Interchange expects actual ASCII tab characters; no spa
or extra characters are accepted.

You may notice that the columns don't line up in your text editor. This is the nature of tab—delimited files. Do
not try to fix these.

15. The products database table 38

16. Page templates

Since most sites have certain aspects of the site that remain the same as the content of the pages changes
are going to create a template that we can use for all pages. We'll divide the page into four sections:

I
I
I
I
I
I
|left] main |
I
I
I
I
I
I

The "main" section holds the content that is different for each page. The "top" section is for headers, banner
menus, and so on. The "left" section can be used as a sidebar or navagation bar, and the "bottom" section ¢
contain the copyright and contact info. The top, left, and bottom sections will remain constant throughout the
site. Making a change to information in one of these sections will make that change to all pages in your site.

Now type the HTML for each template section in an individual plain text file in the catalog directory, named
'top', 'left', and 'bottom’, respectively using the code displayed below. No ".html' suffixes are used on these
because they are not meant to be parsed directly by Interchange as full pages.

16.1. top

<html>

<head>

<title>The Interchange Test Catalog</title>

</head>

<body>

<div align=center>

<table width="80%" border cellpadding=15>

<tr><td colspan=2 align=center><h1>The Interchange Test Catalog</h1></td></tr>

16.2. left

<tr>
<td align=center>(left)</td>
<td align=center>

16.3. bottom

</td>

</tr>

<tr><td colspan=2 align=center>(bottom)</td></tr>
</table>

</div>

</body>

16. Page templates 39

Interchange Documentation (Full)

</html>

16.4. The Interchange Tag Language

Now we need a way to pull the template pieces we just created into the proper places to make a complete
page. This is done using ITL, the Interchange Tag Language.

ITL is at the heart of almost all Interchange catalog pages. It's how you use Interchange's functionality. The
ITL tags appear between square brackets like [this]. Options appear after the tag, separated by whitespace,
like this: [tag option1 option2] and this: [tag optionl=valuel option2=value2]. They can span multiple lines.
(That can help readability when the tag has many options.) There are many ITL tags, and for this tutorial ver
few will be addressed. For a complete listing of the ITL tags, see the Interchange Tag Reference Guide.

Your first tag will be [include], which reads the file mentioned (relative to the catalog directory), parses any

Interchange tags, and puts the result in place of the tag. This is demonstrated on the next page you need to
create.

16.4. The Interchange Tag Language 40

17. Creating a welcome page

17.1. pages/index.html

Create a directory called pages/ in your tutorial catalog directory.

Type the following text and save it as pages/index.html. This will create a page to test that everything
works so far.

[include top]

[include left]

This is where your content goes.
[include bottom]

Restart Interchange so your changes take effect. Go to your web browser and load the page. The URL shol
be similar to the following: http://localhost/cgi—bin/tutorial/index.html.

Note: Interchange pages in the pages/ or other directories must have the .html suffix on them. You can
drop the suffix in your URL and in other places, such as the [page] tag you'll learn about later, but the file
name itself must have the suffix.

17. Creating a welcome page 41

18. Troubleshooting

Your first Interchange page should have displayed as described in your browser. If it didn't, you need to figu
out what went wrong. Most of the time, overlooked details are the problem. Double—checking your typing is
good habit to get into.

The following is a troubleshooting checklist to use when you run into problems:

1.

2.

7.

8.

Have you created directories with the proper names in the proper locations? (See Appendix A for a
full directory and file structure of the tutorial catalog.)

Have you misspelled any file names or put them in the wrong directories? Are the files and parent
directories readable by the interch user? Double—check with the Is command.

. Did you type letters in the proper case? Remember that both Unix and Interchange are case-sensiti

and for the most part you may not switch upper- and lower—case letters.

. Did you type all punctuation, ITL tags, and HTML tags correctly?
. Did you use whitespace correctly in the cases where it mattered? Remember to use tabs when tabs

called for (in lists and database text files).

. Did you restart Interchange if you changed anything in interchange.cfg or catalog.cfg, or

if you're in a high—traffic mode?

Check your catalog error log, error.log in your tutorial catalog directory, to see if Interchange
reported any errors.

Check the Interchange server error log, error.log in the Interchange software directory, to see if it
had problems loading the catalog at all.

9. View the HTML source of any catalog pages that are loading incorrectly to check for a coding error.

The problem may reveal itself when you see what HTML the browser is getting.

18. Troubleshooting 42

19. Displaying products
19.1. Listing all products

Now that your store is running, you need to display your products on the welcome page. We will loop over a
of the products in our database and produce an entry for each one in a table. Replace the line "This is wher
your content goes" in pages/index.html with the following:

<table cellpadding=5>
<tr>

<th>Test #</th>
<th>Description</th>
<th>Price</th>

</tr>

</table>

Now we will use Interchange tags to fill in the rest of the table from the products database you created. The
[loop] [/loop] ITL tag pair tells Interchange to iterate over each item in the parameter list. In this case, the loc
is over the result of an Interchange search. The search parameter does a database search on the provided
parameters. In this case, we're doing a very simple search that returns all of the fields for all of the entries in
the products database. The parameters passed to the search tell Interchange to return all ('ra") on the file ('fi
products respectively. The following should take the place of the ellipsis in the code you placed in
index.html:

[loop search="ra=yes/fi=products"]

[/loop]

In the loop we just established, the individual elements of the entry using the [loop—field] tag. The following
code should replace the above ellipsis in the code we placed in pages/index.html:

<tr>

<td>[loop—code]</td>

<td>[loop—field description]</td>

<td align=right>[loop—field price]</td>
</tr>

The [loop—code] tag refers to the primary key (unique identifier) for the current row of the database table in
guestion. In this case, it will produce the same output as the [loop—field sku] tag, because the 'sku’ field is th
primary key for products table. In each case the tag is replaced by the appropriate element. When put togett
Interchange generates a page with your products table on it.

Your finished page should look like this:

[include top]

[include left]

<table cellpadding=5>
<tr>

<th>Test #</th>

19. Displaying products 43

Interchange Documentation (Full)

<th>Description</th>
<th>Price</th>

</tr>

[loop search="ra=yes/fi=products"]
<tr>

<td>[loop—code]</td>
<td>[loop—field description]</td>
<td align=right>[loop—field price]</td>
</tr>

[/loop]

</table>

[include bottom]

Test this page by refreshing the index.html page in your browser.

19.2. pages/flypage.html

The next step is to create an individual page for each item. To do this, you need to create a special generic
page called pages/flypage.html. When a page is requested that does not exist in the pages/ directory,
Interchange will check and see if the requested page has the same name as a product ID from the product
database table (in this case a SKU). If it does, it will show the flypage for that product. If there's no product
with that ID, the special error page special_pages/missing.html (described in the next section) will

be displayed.

For example, if the page 0198.html was requested, Interchange first checks for a page with that name. If
one is not found, it searches the products database table for a product with that ID. Interchange then create:
product page "on the fly" using pages/flypage.html. When constructing the flypage, the entire product
record for the requested product is available through the [item—field] tag (similar to the [loop—field] tag). To
create a fly page, type the following code and save it as pages/flypage.html.

[include top]
[include left]

<h3>Test #[item—code]</h3>
<p>[item—field description] . . . [item—field price]</p>

[include bottom]

Then, to provide links to the product flypages from your home page, modify pages/index.html slightly,
so that:

<td>[loop—field description]</td>
becomes:

<td>[loop—field description]</td>

19.3. special_pages/missing.html

Create the special_pages/ directory in your tutorial catalog directory (not in the pages/ directory).

As mentioned, it is a good idea to display an error page when Interchange is asked for an unknown page. T
create a missing page for display, type the following and save it as special_pages/missing.html.

19.2. pages/flypage.html 44

Interchange Documentation (Full)

[include top]
[include left]
<p>We're sorry, the page you requested has not been found.</p>

<p>Try finding what you need on the [page index]welcome page.</p>
[include bottom]

The addition of this page ensures that users see your error message instead of a mysterious server error if 1
mistype a URL.

19.2. pages/flypage.html 45

20. The shopping basket
20.1. A link for ordering

Now that you have your products available, let's add a shopping cart so customers can purchase them. This
created using the [order] [/order] tags. These tags create an HTML link that causes the specified item to be
ordered and transfers the shopper to the basket page. This is a built-in shortcut to the complete order proce
which uses an HTML form submission process. The parameter for the [order] tag is the product ID. To add
these tags to the catalog, make the following change to pages/index.htmil:

<tr>
<td>[loop—code]</td>
<td>[loop—field description]</td>
<td align=right>[loop—field price]</td>
+ <td>[order [loop-code]]Order Now][/order]</td>
</tr>
[/loop]

Note: The line you need to add is marked by a '+'. However, do not include the '+ when adding this line. The
surrounding lines are shown to give you context. This style is called a "context diff" and is used often in this
tutorial.

20.2. pages/ord/basket.html

Create the directory pages/ord/ in the tutorial catalog directory. In other words, ord/ should be inside
the pages/ directory.

For the [order] tag, Interchange expects a default page called pages/ord/basket.html. This page
displays the contents of the shopping basket and contains other shopping basket functionality.

The Foundation store has a full-featured shopping basket available for use, but this tutorial teaches you to
build your own simple one. The shopping basket items can be accessed using a set of tags that have an [ite
prefix. Put the following code in the new file pages/ord/basket.html. The section that follows

explains the tags used.

[include top]
[include left]

<h2>This is your shopping cart!</h2>
<table cellpadding=5>

<tr>
<th>Qty.</th>
<th>Description</th>
<th>Cost</th>
<th>Subtotal</th>
</tr>

[item—list]

<tr>

<td align=right>[item—quantity]</td>
<td>[item—field description]</td>

20. The shopping basket 46

Interchange Documentation (Full)

<td align=right>[item-price]</td>
<td align=right>[item-subtotal]</td>
</tr>

[/item~—list]

<tr><td colspan=4></td></tr>

<tr>

<td colspan=3 align=right>Total:</td>
<td align=right>[subtotal]</td>

</tr>

</table>

<hr>

<p>

[page checkout]Purchase now

[page index]Return to shopping
</p>

[include bottom]

The basket items can be accessed one at a time by using the [item-list] tag. So we will create a table by
iterating through the basket items. The text within the [item-list] [/item-list] tags is created for each item in

the list.

« [item—quantity] shows the quantity of the item ordered. If the same item is ordered multiple times, the

guantity increases.

« [item—field description] shows the description from the product database table. Any field that is not

special to Interchange can be accessed from the shopping cart this way.
« [item—price] shows the per—item price that is defined in the product database table.

« [item—subtotal] shows the total cost of this order line. This is normally the price multiplied by the
guantity, but it can also take into account other considerations, such as various kinds of price

discounts.
« [subtotal] shows the calculated shopping basket subtotal.

* [page index] creates the starting HTML for a link to the catalog welcome page.

You also need to put a link in the index page so that shoppers can go to their shopping cart without ordering

something. Modify the end of pages/index.html by adding the following lines.

</table>

+ <hr>

+ <p align=center>[page order]View shopping cart</p>
[include bottom]

Refresh the page and test the shopping basket in your browser.

20. The shopping basket

47

21. Order checkout
21.1. pages/checkout.html

The site can now be completed by adding the ability to check out with the shopping cart and finalize the ord
To do this the customer needs to provide a shipping address (which, for the sake of this tutorial, we will
assume is the same as the billing address), and payment information. We will process the order by verifying
the customer's payment information and sending an email to the merchant (ourselves) detailing the order.

First you need to create a checkout page. The checkout page consists of a form that receives order informa
from the customer and performs a simple credit card number check. In this tutorial we will use a built-in test

that only checks to see if a given credit card number could be valid. If the information is acceptable the
customer will move to the next phase of the order process. If it is not, an error page will be displayed.

To create a checkout page, type the following code and save it as pages/checkout.html. The section

that follows explains the code.

[include top]
[include left]
<h1>Checkout Page</h1>

<form method=post action="[process]">

<input type=hidden name=mv_todo value=submit>

<input type=hidden name=mv_order_profile value=order_profile>
<input type=hidden name=mv_cyber_mode value=minivend_test>

<table cellpadding=3>

<tr>
<td align=right>First name:</td>

<td><input type=text name=fname value="[value fname]"></td>
</tr>

<tr>
<td align=right>Last name:</td>

<td><input type=text name=Iname value="[value Iname]"></td>
</tr>

<tr>
<td align=right rowspan=2>Address:</td>

<td><input type=text name=address1 value="[value address1]"></td>
</tr>

<tr>
<td><input type=text name=address2 value="[value address2]"></td>
</tr>

<tr>
<td align=right>City:</td>

<td><input type=text name=city value="[value city]"></td>
</tr>

<tr>
<td align=right>State:</td>

<td><input type=text name=state value="[value state]"></td>
</tr>

21. Order checkout

48

Interchange Documentation (Full)

<tr>

<td align=right>Postal code:</td>

<td><input type=text name=zip value="[value zip]"></td>
</tr>

<tr>
<td align=right>Country:</td>

<td><input type=text name=country value="[value country]"></td>
</tr>

</table>

<p>
Note: We assume that your billing address is the same as your shipping address.
</p>

<table cellpadding=3>

<tr>
<td align=right>Credit card number:</td>

<td><input type=text name=mv_credit_card_number value="" size=20></td>
<ftr>

<tr>

<td align=right>Credit card expiration date:</td>
<td>

Month (number from 1-12):

<input type=text name=mv_credit_card_exp_month value=

Year (last two digits only):

<input type=text name=mv_credit_card_exp_year value=
</td>

<ftr>

size=2 maxlength=2>

size=2 maxlength=2>

</table>

<p>
<input type=submit name=submit value="Finalize!">
<input type=reset name=reset value="Reset">

</p>

</form>

<p>[page index]Return to shopping instead</p>
[include bottom]

The HTML form begins with a method of 'post' (which sends the form data as its own stream, as opposed to
the 'get' method which encodes the data as part of the URL). The [process] tag creates a special URL for fo
processing. Interchange has a built—in form processor that is configured by submitting certain fields in the
form. The Finalize button will invoke this form processor and link the user to the

special_pages/receipt.html page, which is described later.

You are submitting some hidden form values that will tell Interchange how to process this form. The first
value, mv_todo was set as submit. This causes the form to be submitted for validation. The second value,
mv_order_profile was set as order_profile. This determines the validation process for the form. It is explaine
further in the next section.

The last value, mv_cyber_mode, was set to be minivend_test. The mv_cyber_mode value determines what
method will be used to charge a credit card. The value of minivend_test uses the internal test method, whict

21. Order checkout 49

Interchange Documentation (Full)

calculates a simple checksum against the card to determine if it is a valid number.

When preparing an order for processing, Interchange looks for certain named fields in the form values for
name, address, and credit card information. We are using all expected field names in this form so that no
translation needs to take place.

View the checkout page in your browser. The "Finalize!" link has not been enabled, but the page should
display properly.

21.2. etc/profiles.order

Create the etc/ directory in the tutorial catalog directory now.

You need to set up verification for the order form by defining an order profile for the form. An order profile
determines what fields are necessary for the form to be accepted. Create an order profile verification page
typing the following and saving it as etc/profiles.order. The section that follows explains the code

used.

__NAME__ order_profile

fname=required
Iname=required
addressl=required
city=required
state=required
zip=required

&fatal=yes
&final=yes

__END__
A single file can contain multiple profile definitions. First the profile is named using the _ NAME__ pragma.
(This is unrelated to the _ VARIABLE __ syntax seen elsewhere in Interchange.) Then in the profile there is
list of the form fields that are required. The &fatal setting indicates that validation will fail if any of the
requirements are not met. &final indicates that this form will complete the ordering process. This setting is
helpful if you have a multi-page ordering process and you want to validate each page individually. The
__END__ pragma signals the end of this profile, after which you can begin another one.

In order to activate your order profile, add the following OrderProfile directive to the end of catalog.cfg:

OrderProfile etc/profiles.order

21.3. special_pages/needfield.html

If the submitted form lacks a required field, Interchange will display an error page. The default location is
special_pages/needfield.html. To create this page, type the following text and save it as
special_pages/needfield.html.

[include top]
[include left]
<p>The following information was not given:</p>

21.2. etc/profiles.order 50

Interchange Documentation (Full)

<p>[error all=1 show_var=1 show_error=1 joiner='
"1</p>

<p>Please go back to the [page checkout]checkout page
and fill out the form properly.</p>

[include bottom]

The [error] tag is the most important tag on this page. The all parameter tells the tag to iterate through all of
the errors reported from the failed verification, and the show_var parameter indicates that the failed variable
name should be displayed. For example, if the first name was left empty, fname would be shown. The
show_error parameter displays the actual error for the variable. The joiner parameter inserts an HTML

tag between each error message, so each error is displayed on its own line. In more complex configurations
the [error] tag can be even more expressive.

21.4. Credit card processing

This tutorial uses a very simple order process. To accomplish this, one more directive needs to be added to
file etc/profiles.order:

&fatal=yes
&final=yes
+ &credit_card=standard keep

END

This issues two instructions to the credit card system.

The first option, standard, uses the standard built—in encryption algorithm to encrypt the credit card number
and erases the unencrypted copy from memory. We are using the standard option not to encrypt the numbe
but to run the checksum verification on the number to verify that it is a potentially correct number. We will
not be checking with a real payment processor to see if it actually is a valid card number. For testing purpos
you can use the card number 4111 1111 1111 1111, which will pass the checksum test.

The second option, keep, keeps the credit card number from getting removed from memory. We want to kee
the number in memory so that it is available when it is mailed as part of the order.

If the credit card number passes and all of the required fields are present, the customer will be sent to the fit
page. Interchange then sends an e-mail to the store owner (you).

21.5. etc/report

When the customer's involvement in the order is complete, Interchange composes an email and sends it to
recipient defined in the MailOrderTo directive in catalog.cfg. The default location for the template for
this email report is etc/report. Interchange tags can be used to fill in the body of the message.

The report should include at least the customer's name, address, and the items they ordered. The following
simple report template; save it as etc/report.

Name: [value fname] [value Iname]
Address: [value address1][if value address2]
[value address2][/if]
City, State, etc.: [value city], [value state] [value zip] [value country]

21.4. Credit card processing 51

Interchange Documentation (Full)

Credit Card #: [cgi mv_credit_card_number]
Expiration Date: [cgi mv_credit_card_exp_month]/[cgi mv_credit_card_exp_year]

*kkkkkkkkkkk ORDER *kkkkkkkkkkk
[item—list]
[item—quantity] x [item—description] ([item—code]), [item—price] ea.
[/item~—list]
Subtotal: [subtotal]
Total: [total-cost]

This file is in plain text format where, unlike HTML, white space is relevant. It is fairly straightforward,
except that the [if] tag was added to only include the optional second address line if the customer filled it in.

One of the special properties of the mv_credit_card_number field is that Interchange specifically precludes
the credit card number from being saved. This makes it unavailable to you in the [value] tag. The [cgi] tag is
used to circumvent this important security measure in order to get the value submitted from the last form.

WARNING! Obviously it is a bad idea to send a real credit card number over an insecure channel like email.
In a real configuration, you would encrypt the number securely before emailing or storing it.

21.6. special_pages/receipt.html

Once the report has been run, Interchange will finish the order process on the customer side by displaying &
success screen containing a receipt. The default location for this page is

special_pages/receipt.html. To create a receipt page, type the following code and save it as
special_pages/receipt.html.

[include top]

[include left]

<p>Thank you for ordering stuff from us.
Have a nice day!</p>
<p>[page index]Return to our welcome page</p>

[include bottom]

Once the order is processed, the customer's shopping cart is emptied.

At this point you have a more-or-less functional store. Congratulations.

21.6. special_pages/receipt.html 52

22. Enhancing the catalog

Now that you have a working catalog, you can go back and add improvements and test them incrementally.
This section walks you through several and then suggests more enhancements you can attempt on your ow

22.1. Price pictures

You may have noticed that the product prices aren't formatted as prices usually are. The way to correct this
with an Interchange feature called price pictures.

There are several properties to price pictures: the currency symbol, the thousands separator, the decimal pc
the number of digits to show behind the decimal, and so on. Most Unix systems have U.S. currency and the
English language as the default locale, which is called en_US. The only thing you need to do on such a
system is specify the currency symbol, which, in this case, is the dollar sign. To do this, add the following lin
to your catalog.cfg file:

Locale en_US currency_symbol $

Restart Interchange and view your catalog. You will notice little has changed on the welcome page or the
flypages, but in the shopping cart all your prices should be formatted as U.S. dollars ("1347.3" has become
"$1,347.30"). This is because Interchange automatically formats shopping cart prices as currency. To turn o
this feature, you would have to change the [item—price] tag to [item—price noformat] in
pages/ord/basket.html.

But that's probably not what you want to do. You're probably more interested in formatting your other prices
as currency. To do that, simply use the [currency] [/currency] tag pair for all price values. Make the following
change to pages/index.htmil:

[loop search="ra=yes/fi=products"]
<tr>
<td>[loop—code]</td>
<td>[loop—field description]</td>
- <td align=right>[loop—field price]</td>
+ <td align=right>[currency][loop—field price][/currency]</td>
</tr>
[/loop]

Note: The line that begins with '=' should be deleted. Do not type the '-'. The next line, that starts with '+,
replaces it.

A similar change to the [item—field price] tag in the pages/flypage.html page will fix that
currency display. View the page in your browser. All your prices should be formatted for U.S. currency.

If your prices are not being formatted correctly, your default system locale may be set up differently or your
en_US locale settings may be wrong. There are a few other catalog.cfg directives you can use to correct
the situation:

Locale en_US p_cs_precedes 1

Makes the currency symbol precede the currency value. A '0' setting makes the symbol come after the
currency value.

22. Enhancing the catalog 53

Interchange Documentation (Full)

Locale en_US mon_thousands_sep ,
Sets your thousands separator to a comma. It can be set to any value.
Locale en_US mon_decimal_point .

Sets your decimal separator to a comma. Many countries use a comma instead of a period to separate the
integer from the decimal part.

Note: Consult the Interchange documentation and your operating system manual for more information on
locale settings.

22.2. Catalog variables

Interchange provides a very useful feature that has not been discussed yet called catalog variables. It provic
a way for you to set a variable to a certain value in the catalog.cfg file and use it anywhere in your

catalog pages. The Variable directive allows an Interchange catalog variable to be created with the name
coming from the first parameter and the value from the rest of the line, like this:

Variable SOMENAME whatever value you want

To access that variable in your pages, type the token _ SOMENAME___. Notice that there are two undersco
characters before the variable name and two after it, and that in place of the word SOMENAME you would
put the actual name of the variable. The first thing Interchange does on a page is to replace the token with tl
variable's value. The value can also include Interchange tags to be parsed.

22.3. A more interesting page footer

You can put a contact email address at the bottom of each page in case your customers want to contact yot
You could just add it to the footer, but by putting it into a variable you can use it in contact pages as well. Th
allows you to easily change the variable information and have that change reflected in all instances of that
variable. The following is an example of how to set a catalog variable in catalog.cfg:

Variable CONTACT_EMAIL someone@your.domain

Now make the following change to your template file bottom:

</td>

</tr>
— <tr colspan=2><td>(bottom)</td></tr>
+ <tr colspan=2><td>Contact us
+ if you have any questions.</td></tr>

</table>

</div>

</body>

</html>

Be sure to restart Interchange before reloading the page in your browser, since you made a change to
catalog.cfg.

Let's add another variable to your catalog. This variable demonstrates how an Interchange tag can be incluc
in the variable. This Interchange tag returns the current date in a standard format. Add the following to

22.2. Catalog variables 54

Interchange Documentation (Full)

catalog.cfg:

Variable DISPLAYDATE [time]%A, %B %d, %Y[/time]

Note: See the Interchange Tag Reference Guide for an explanation of the [time] tag.

Now add the following to the left template piece:

<tr>

- <td align=center>(left)</td>

+ <td align=center>__DISPLAYDATE__ </td>
<td align=center>

Restart Interchange and view the page.

22.4. Advanced credit card expiration date selection

To reduce the possibility of human error at checkout time, most online stores use a pull-down option menu-
list the months and the years for the credit card expiration date, instead of having the user to type the numb
by hand. It also lets you avoid explaining whether the user should enter a 2—- or 4-digit year.

Make the following change to your pages/checkout.html page. The section that follows explains the
code. Read the explanation section below before typing the code to be sure you know where tabs should be
used instead of spaces and where to watch out for “backticks’.

<tr>
<td align=right>Credit card expiration date:</td>
<td>
- Month (humber from 1-12):
- <input type=text name=mv_credit_card_exp_month value="" size=2 maxlength=2>
-

- Year (last two digits only):
- <input type=text name=mv_credit_card_exp_year value="" size=2 maxlength=2>
+
+ Month:
+ <select name=mv_credit_card_exp_month>
+ [loop
+ Ir=1
+ option=mv_credit_card_exp_month
+ list="
+1 01 -January
+2 02 - February
+3 03 - March

+4 04 - April
+5 05-May
+6 06— June
+7 07 -Jduly

+8 08 - August

+9 09 - September

+10 10 - October

+11 11 - November

+12 12 - December"]

+ <option value="[loop—code]">[loop—pos 1]
+ [/loop]

+ </select>

+

+ Year:

22.4. Advanced credit card expiration date selection 55

Interchange Documentation (Full)

+ <select name=mv_credit_card_exp_year>

+ [comment]

+ This should always return the current year as the first, then

+ seven more years.

+ [fcomment]

+ [loop option=mv_credit_card_exp_year Ir=1 list="
my $year = $Tag—>time(", { format =>'%Y"'}, '%Y");
my $out = ";
for ($year .. $year + 7) {

Nd\d(\d\d)/;

$last_two = $1;

$out .= "$last_twolt$_\n";
}
return $out;

1

+ <option value="[loop—code]">[loop-pos 1]

+ [/loop]

+ </select>

+
</td>
</tr>

+ + + + + + o+

+

</table>

In the first set of <select> </select> tags a list is generated of the months to choose from. This is accomplist
by using a [loop] tag. In this case we are looping over an explicit list. The list is provided in the list paramete
Use caution when typing this, as it is sensitive to formatting (which may not be reflected in this document).
Make sure that the numbers are the first characters on each new line and that the elements are separated &
single tab. Since the columns in this list are not named, the first element can be accessed using [loop—code
[loop—pos 0] with subsequent elements being accessed by [loop—pos N] where N is the number of the elems
you want. Notice that the elements are zero—indexed. Each time through this loop Interchange generates a
select <option> with a humber as the value and the name of the month as the text for the select menu.

For the next set of <select> </select> tags embedded Perl is used to generate the list which is iterated over.
Perl code can be embedded in Interchange pages in order to extend the abilities of the system. Make sure
typed backticks (grave accents) after "list=" and before the closing bracket and not apostrophes. This code
generates an entry for seven years in addition to the current year. It is not necessary at this point for you to
understand this Perl code.

22.5. Sorting the product list

The products listed on your welcome page are shown in the same order that you entered them into
products/products.txt. As you add more products, you will want this list to show up in a predictable
order. To do this, you need to change the search parameters in index.html, which were originally:

[loop search="ra=yes/fi=products"]

You will recall that 'ra’ stands for 'return all' and 'fi' stands for file. Let's add the search parameter 'tf', which
specifies the sort field. You can specify the field either by name or by number (starting with 0), with names
and order as given in the first line of products/products.txt). Make the following change in

index.html:

[loop search="ra=yes/fi=products/tf=price"]

22.5. Sorting the product list 56

Interchange Documentation (Full)

Refresh your browser. The default ordering is done on a character—by—character basis, but we were looking
do a numeric sort. For this you need to set 'to', the sort order, to 'n’, for numeric:

[loop search="ra=yes/fi=products/tf=price/to=n"]

Refresh your browser. Now try reversing the sort order by adding 'r' to the 'to' setting:

[loop search="ra=yes/fi=products/tf=2/to=nr"]

You'll notice that it worked equally well to specify the sort field by number instead of name. You could also
do a reverse alphabetical sort by description:

[loop search="ra=yes/fi=products/tf=1/to=r"]

Now let's try narrowing the search down a bit. Instead of returning all, we'll give 'se’, the search paramerter,
and and use 'su’, which allows substring matches. To search only for products that have the word "test" in o
of their fields, and sort the results by description, type:

[loop search="se=test/su=yes/fi=products/tf=description"]
Which seems like something that would be better done in a search box for your store visitors.

Before moving on, change this search back to the simple list, sorted by description:

[loop search="ra=yes/fi=products/tf=description"]

22.6. Adding a search box

Your customers might appreciate the ability to search for a test by SKU or part of the test description. To do
this, you need to add a search box to the left portion of the page layout. Make the following change to the fil
left:

<tr>
- <td align=center>__ DISPLAYDATE__ </td>
+ <td align=center>
+ <form action="[area search]" method=post>
+ Search:

+ [set testhame]su=yes/fi=products/sf=sku/sf=description[/set]
+ <input type=hidden name=mv_profile value=testname>
+ <input type=text name=mv_searchspec size=15 value="">
+ </form>
+ <hr>
+ __ DISPLAYDATE___
+ </td>
<td align=center>

This is a simple HTML form with a single input box for text. The action goes to a special Interchange
processor called 'search' that will perform the search and pass the results to a page called
pages/results.html (that has not been created yet).

The [set testhname] ... [/set] tags set an Interchange 'value' variable that, in this case, will be used as a

predefined search profile. We specify all the search parameters except the one the user will enter,
'mv_searchspec' (the long name for 'se'). We then tell Interchange we want to use this search profile in a

22.6. Adding a search box 57

Interchange Documentation (Full)

hidden form tag named 'mv_profile'.

The search box will now appear on all catalog pages, but you still need to create the search results page. T
create the search results page, type the following code and save it as pages/results.html.

[include top]
[include left]
<h3>Search Results</h3>
[search-region]
[on—-match]
<table cellpadding=5>
<tr>
<th>Test #</th>
<th>Description</th>
<th>Price</th>
</tr>
[fon—-match]
[search-list]
<tr>
<td>[item—-code]</td>
<td>[item—field description]</td>
<td align=right>[item—field price]</td>
<td>[order [item—code]]order now[/order]</td>
</tr>
[/search-list]
[on—-match]
</table>
[fon—-match]
[no—match]
<p>Sorry, no matches were found for '[cgi mv_searchspec]'.</p>
[/no—match]
[/search-region]
<hr>
<p align=center>[page index]Return to welcome page</p>
<p align=center>[page order]View shopping cart</p>
[include bottom]

The search results will be contained in the [search-region] [/search-region] tags. The text in the [on—match]
[fon—-match] container will be displayed only if matches were found for the search. The text in the [no—match

[f[no—match] container will be displayed only if no matches were found. The [search-list] [/search-list]
container functions just like [loop] [/loop], iterating over its contents for each item in the search results list.

22.7. The default catalog page

As you know, a standard Interchange catalog page URL looks like this:
http://localhost/cgi—bin/tutorial/index.html

But what happens if you leave off the page name, as people often do when typing URLs in by hand? Type:
http://localhost/cgi—bin/tutorial

and you get a server error message. We can change this by adding the following directive to catalog.cfg:

SpecialPage catalog index

22.7. The default catalog page 58

Interchange Documentation (Full)

Restart Interchange and try the above URL again.

Note: If you want to make the welcome page something other than pages/index.html, modify the
'index’ part of the directive appropriately.

22.8. High—-traffic changes

Through this tutorial you have created catalog pages that use the [include] tag to include template pieces in
pages. This has worked well, but there are a few drawbacks. First, if you want to rename any of the templatt
piece files or move them out of the main catalog directory and into their own subdirectory, you would have tc
update the [include] tag on every page. To avoid this, you can create catalog variables set to the [include] ta
Add these lines to your catalog.cfg file:

Variable TOP [include top]
Variable LEFT [include left]
Variable BOTTOM [include bottom]

Now change every instance of [include top] to _ TOP__, doing the same for each [include] tag. At this point
you might not want to do a search—and-replace on all the .html files you just created, but keep this capabilit
in mind for the next catalog you work on.

If you made all of the replacements and then renamed and moved your top file, you would only have to mak
a single change for each region in catalog.cfg to get your pages up to date:

Variable TOP [include templates/main—top]

And so on, depending on your naming scheme.

22.9. High traffic mode

Every time a catalog page is viewed, each file in an [include] tag must be loaded from disk. In a test situatiol
this takes no noticeable amount of time. But on a busy Interchange server, this can slow your system.

You can switch to a high—traffic mode that doesn't require each template piece to be read from disk every tir
the page is loaded. Instead, all of the pieces are read into variables once when Interchange is started and tt
remain in memory until Interchange is restarted. On very busy Interchange catalogs, this can increase your
speed noticeably. The only drawback is that you need to restart the Interchange daemon when you make
changes to the template pieces in order to have the changes take effect. You can set up high—traffic templa
by changing the Variable directives in catalog.cfg as follows:

Variable TOP <top
Variable LEFT <left
Variable BOTTOM <bottom

22.8. High—traffic changes 59

23. ldeas for further enhancements

You can expand your skill with Interchange by adding more functionality to your test catalog. Here are some
simple ideas to get you started:

» Send the customer a receipt by email

« Allow customer to specify item quantities

» Generate a unique order number for each order

* Store each order in a database

« Interface with GnuPG or PGP to encrypt credit card numbers in email reports
« Organize your products into categories and group lists by category

23. ldeas for further enhancements 60

A. Catalog directory structure

This diagram shows the directory and file structure used for the 'tutorial' catalog you built. The base will be &
directory with the name of your catalog:

tutorial/

I

|-———bottom

|-—--catalog.cfg

|-———error.log *

|-———etc/
|-———profiles.order
|-——-report

|[-——-left

|-——-pages/
|-——-checkout.html
|-———flypage.html
|-——=index.html
|-——-ord/

|-———Dbasket.html

|-——-results.html

|-———products/
|-——-products.gdbm *
|-———products.txt

|-——-session/
|-———(many subdirectories and files) *

|-——-special_pages/
|-———missing.html
|-———needfield.html
|-——-receipt.html

|-———tmp/ *

|-———top

* denotes files that are automatically created by Interchange at run time. The name of products.gdbm may
vary on your system depending on your Perl setup and default system DBM libraries.

A. Catalog directory structure 61

B. Document history

October 2000. Conceived and written by Sonny Cook.

December 2000. Edited and expanded by Jon Jensen.

January 2001. Proofread and clarified by Alison Smith and David Adams.

12 January 2001. First public release.

Copyright 2001 Red Hat, Inc. Freely redistributable under terms of the GNU General Public License. line:

B. Document history 62

Configuration Reference

Configuration Reference

63

24. Interchange Configuration Files

The Red Hat Interchange 4.8 Configuration Reference is an alphabetical reference to the configuration
directives used in Interchange global and catalog configuration files.

Interchange has multiple catalog capability, and therefore splits its configuration into two pieces. One is

global, interchange.cfg, and affects every catalog running under it. The other, catalog.cfg is
specific to an individual catalog, and has no effect on other catalogs.

24.1. Directive syntax

Configuration directives are normally specified with the directive as the first word on the line, with its value
or values following. Capitalization of the directive hame is not signifigant. Leading and trailing whitespace is
stripped from the line.

Including files in directives
Additional files may be called with an include file notation like this:
DirectiveName <includefile

Files included from interchange.cfg are relative to the Interchange software directory. Files included from
catalog.cfg are relative to the catalog directory.

Here documents

A "here document” can be used to spread directive values over several lines, with the usual Perl <<MARKE
syntax. No semicolon is used to terminate the marker. The closing marker must be the only thing on the line
No leading or trailing characters are allowed, not even whitespace. Here is a hypothetical directive using a
here document:

DirectiveName <<EOD
settingl
setting2
setting3

EOD

That is equivalent to:

DirectiveName settingl setting2 setting3
Include single setting from file

Value can be pulled from a file with <file:

Variable MYSTUFF <file

This works well for includes that must be of the highest possible performance. They can be simply placed in
page with _ VARIABLE .

include

24. Interchange Configuration Files 64

Interchange Documentation (Full)

Other configuration files can be included in the current one. For example, common settings can be set in on
file:

include common.cfg
Or all files in one directory:
include usertag/*

ifdef and ifndef

ifdef/endif and ifndef/endif pairs can be used:

Variable ORDERS_TO email_address

ifdef ORDERS_TO
ParseVariables Yes
MailOrderTo __ ORDERS_TO___
ParseVariables No

endif

ifdef ORDERS_TO =~ /foo.com/

Send all orders at foo.com to one place now
Set ORDERS_TO to stop default setting
Variable ORDERS_TO 1

MailOrderTo orders@foo.com

endif

ifdef ORDERS_TO eq 'nobody@nowhere.com’

Better change to something else, set ORDERS_TO to stop default
Variable ORDERS_TO 1

MailOrderTo someone@somewhere.com

endif

ifndef ORDERS_TO

#Needs to go somewhere....
MailOrderTo webmaster@Ilocalhost
endif

24. Interchange Configuration Files 65

25. interchange.cfg

The VendRoot directory, specified in the main program interchange, is the default location of all of the
Interchange program, configuration, special, and library files. Unless changed in the call to interchange,
the main Interchange server configuration file will be interchange.cfg in the VendRoot directory.

The directives defined in interchange.cfg affect the entire Interchange server and all catalogs running
under it. Multiple Interchange servers may be run on the same machine with totally independent operation.

Following is an alphabetical listing of all global configuration directives.

25.1. ActionMap *global*

Allows setting of Interchange form actions, usually with a Perl subroutine. Actions are page names like:

process Perform a processing function

order Order items

scan Search based on path info

search Search based on submitted form variables

The global version of ActionMap applies to all catalogs. If the same action is specified in catalog.cfg, it
will pertain. See ActionMap in that section.

25.2. AddDirective *global*

Adds a configuration directive that will be parsed for every catalog.cfg file. Accepts three parameters:
the name of the directive, the name of the parser (if any), and the default value (if any). The following
definition would add a directive "Foo," with parser "parse_bar," and a default value of "Hello, world!":

AddDirective Foo bar "Hello, world!"
If the parser is not defined, the directive value will be scalar and the same as what the user passes in the cc
file. If defined, the parser must be extant before it can be referenced, is always resident in Vend::Config, anc

begins with the string parse_. Examples can be found in the files in the distribution software directory
compat/.

25.3. AdminSub *global*

Marks a global subroutine for use only by catalogs that are set to AllowGlobal (see below). Normally
global subroutines can be referenced (in embedded Perl) by any catalog.

AdminSub dangerous

25.4. AllowGlobal *global*

Specifies catalog identifiers that may define subroutines and UserTag entries that can operate with the full
permissions of the server. Don't use this unless the catalog user is trusted implicitly. Default is blank.

AllowGlobal simple

25. interchange.cfg 66

Interchange Documentation (Full)

Using AllowGlobal is never necessary, and is always dangerous in a multi-user environment. Its use is not
recommended.

25.5. AutoVariable *global*

Specifies directives which should be translated to Variable settings. For scalars, the directive name become
the Variable name and yields its value, i.e. ErrorFile becomes __ ErrorFile__, which would by

default be error.log. Array variables have a _N added, where N is the ordinal index, i.e. SafeUntrap
becomes _ SafeUntrap 0, SafeUntrap_1 , etc. Hash variables have a _KEY added, i.e.

SysLog becomes __ SysLog command__, SyslLog_facility , etc. Doesn't handle hash keys

that have non—-word characters or whitespace. Only single—level arrays and hashes are translated properly.

See AutoVariable in catalog.cfg.

25.6. Catalog *global*

Specifies a catalog that can run using this Interchange server. This directive is usually inserted into
interchange.cfg by the makecat program when you build a new catalog.

There are three required parameters, as shown in this example:
Catalog simple /home/interchange/simple /cgi—bin/simple

The first is the name of the catalog. It will be referred to by that name in error, warning, and informational
messages. It must contain only alphanumeric characters, hyphens, and underscores. It is highly recommenc
that it be all lower case.

The second is the base directory of the catalog. If the directory does not contain a catalog.cfg file, the
server will report an error and refuse to start.

The third is the SCRIPT_NAME of the link program that runs the catalog. This is how the catalog is selected
for operation. Any number of alias script names may be specified as additional parameters. This allows the
calling path to be different while still calling the same catalog:

Catalog simple /home/interchange/simple /cgi—bin/simple /simple

This is useful when calling an SSL server or a members-only alias that requires a username/password via
HTTP Basic authorization. All branched links will be called using the aliased URL.

The script names must be unique among CGI program paths that run on this server; the same name cannot
used for more than one catalog unless the FullURL directive is specified. In this case, the parameter may be
specified as:

www.yourcompany.com/cgi—bin/simple
www.theirs.com/cgi—bin/simple

Each of those 'simple' catalogs would then call a different catalog.

Optionally, individual Catalog directives that specify each of the different parameters may be used. The
equivalent of our original example directive above is:

25.5. AutoVariable *global* 67

Interchange Documentation (Full)

Catalog simple directory /home/interchange/simple
Catalog simple script /cgi—bin/simple
Catalog simple alias /simple

Global directives may be specified that will change for that catalog only. This is mostly useful for
ErrorFile and DisplayErrors:

Catalog simple directive ErrorFile /var/log/interchange/simple_error.log

25.7. CheckHTML *global*

Set to the name of an external program that will check the users HTML when they set [flag checkhtml]
or [tag flag checkhtml][/tag] in their page.

CheckHTML /usr/local/bin/weblint

25.8. ConfigAllAfter *global*

The name of a file (or files) which should be read as a part of every catalog's configuration, after any other
configuration files are read. Default is catalog_after.cfg.

ConfigAllAfter check_actions.cfg check_variables.cfg

25.9. ConfigAllBefore *global*

The name of a file (or files) which should be read as a part of every catalog's configuration, before any othel
configuration files are read. Default is catalog_before.cfg.

ConfigAllBefore set_actions.cfg set_variables.cfg

25.10. ConfigParseComments *global*

Set to No if you want old—style '#include', '#ifdef', or '#ifndef' to be treated as the comments they appear to b
The default is Yes, which means both '#include' and 'include’ do the same thing. (Use a space after the '#' if
you really want to comment out the command.)

Interchange prior to version 4.7 used a different syntax for meta—directives 'include’, 'ifdef', and 'ifndef' in
configuration files. The commands were borrowed from the C preprocessor, and true to their C heritage, the
started with '#'": '#include', '#ifdef', '#ifndef'. Interchange configuration files, unlike C, uses '#' to begin
one-line comments, which meant that a newcomer at first glance might assume that:

#Variable DEBUG 1
#include more.cfg

were both comments, when in fact the second was a live #include command.
To begin to make things more consistent, Interchange 4.7 and up now recognize those meta—directives

without the leading '#', and the included demo catalog sets this directive to No so that lines beginning with '#
really are skipped as comments, regardless of what comes after.

25.7. CheckHTML *global* 68

Interchange Documentation (Full)

25.11. Database *global*

Defines a database which is global and available to all catalogs. Writing can be controlled by catalog. See
Database.

25.12. DataTrace *global*

Set DBI to trace at the level specified. Valid values are:

0 — Trace disabled.

1 - Trace DBI method calls returning with results or errors.

2 — Trace method entry with parameters and returning with results.

3 - As above, adding some high-level information from the driver and some internal information from the
DBI.

4 - As above, adding more detailed information from the driver. Also includes DBI mutex information when
using threaded Perl.

5 and above — As above but with more and more obscure information.

Trace level 1 is best for most Interchange debug situations. Trace will only be enabled when DebugFile is
specified, as that file is the target for the trace. Example:

DataTrace 1

Default is 0. Directive added in 4.7.0.

25.13. DebugFile *global*

Names a file, relative to the Interchange root directory, which should store the output of logDebug
statements, and warnings if warnings are enabled.

DebugFile /tmpl/icdebug

25.14. DisplayErrors *global*

While all errors are reported in the error log file, errors can also be displayed by the browser. This is
convenient while testing a configuration. Unless this is set, the DisplayErrors setting in the user catalogs
will have no effect. Default is No.

DisplayErrors Yes

Note: This changes the value of $SIG{__DIE__} and may have other effects on program operation. This
should NEVER be used for normal operation.

25.11. Database *global* 69

Interchange Documentation (Full)

25.15. DomainTail *global*

Implements the domain/IP session qualifiers so that only the major domain is used to qualify the session ID.
This is a compromise on security, but it allows hon—cookie—accepting browsers to use multiple proxy server
in the same domain. Default is Yes.

DomainTail No

If encrypting credit cards with PGP or GPG, or are using a payment service like CyberCash, look at the
WideOpen directive, which enables more browser compatibility at the cost of some security.

25.16. DumpStructure *global*

Tells Interchange to dump the structure of catalogs and the Interchange server to a file with the catalog nan
and the extension .structure. Use this to see how directives have been set.

25.17. EncryptProgram *global*

Specifies the default encryption program that should be used to encrypt credit card numbers and other
sensitive information. Default is gpg if found on the system; then pgpe, if found; then pgp, and finally
none, disabling encryption.

This is used to set the default in catalog.cfg, which has its own independent setting of
EncryptProgram.

25.18. Environment *global*

Environment variables to inherit from the calling CGI link program. An example might be PGPPATH, used tc
set the directory which PGP will use to find its key ring.

Environment MOD_PERL REMOTE_USER PGPPATH

25.19. ErrorFile *global*

Sets the name of the global error log. The default is error.log in the Interchange software directory.
ErrorFile /var/log/interchange/log
Of course, the user ID running the Interchange server must have permission to write that file.

Optionally, syslog error logging can be set up as well. See SysLog.

25.20. FormAction *global*

Allows a form action (like the standard ones return, submit, refresh, etc.) to be set up. It requires
a Perl subroutine as a target:

FormAction foo <<EOR

25.16. DumpStructure *global* 70

Interchange Documentation (Full)

sub {
$CGI->{mv_nextpage} = 'bar’;

}
EOR

If it returns a true (non-zero, non—-empty) value, Interchange will display the page defined in
$CGI->{mv_nextpage}. Otherwise, Interchange will not display any page. The default Interchange actions
can be overridden, if desired. There is also a catalog—specific version of this directive, which overrides any
action of the same name.

The global version affects all catalogs —— there is also a catalog—specific version of FormAction which is
protected by Safe.

25.21. FullUrl *global*

Normally Interchange determines which catalog to call by determining the SCRIPT_NAME from the CGI
call. This means that different (and maybe virtual) hosts cannot use the same SCRIPT_NAME to call differe
catalogs. Set FullUrl to Yes to differentiate based on the calling host. Then, set the server name in the
Catalog directive accordingly, such as yourdomain.com/cgi—bin/simple. A yes/no directive, the

default is No.

FullUrl Yes

If it is set in this fashion, all catalogs must be defined in this fashion. NOTE: The individual catalog setting
will not work, as this is used before the catalog name is known.

25.22. GlobalSub *global*

Defines a global subroutine for use by the [perl sub] subname arg /perl] construct. Use the
"here document" capability of Interchange configuration files to make it easy to define:

GlobalSub <<EOF

sub count_orders {
my $counter = new File::CounterFile "/tmp/count_orders", '1";
my $number = $counter—>inc();
return "There have been $number orders placed.\n";

}
EOF

As with Perl "here documents," the EOF (or other end marker) must be the ONLY thing on the line, with no
leading or trailing white space. Do not append a semicolon to the marker. (The above marker appears
indented. It should not be that way in the file!)

IMPORTANT NOTE: These global subroutines are not subject to security checks. They can do most
anything! For most purposes, scratch subroutines or catalog subroutines (also Sub) are better.

GlobalSub routines are subject to full Perl use strict checking, so errors are possible if lexical variables or
complete package qualifications are not used for the variables.

25.21. FullUrl *global* 71

Interchange Documentation (Full)

25.23. HammerLock *global*

The number of seconds after which a locked session could be considered to be lost due to malfunction. This
will kill the lock on the session. Only here for monitoring of session hand-off. If this error shows up in the
error log, the system setup should be examined. Default is 30.

HammerLock 60

This mostly doesn't apply to Interchange when using the default file—based sessions.

25.24. HitCount *global*

Increments a counter in ConfDir for every access to the catalog. The file is named hits.catalogname,
where catalogname is the short catalog identifier. A Yes/No directive, default is No.

HitCount Yes

25.25. HouseKeeping *global*

How often, in seconds, the Interchange server will "wake up" and look for user reconfiguration requests and
hung search processes. On some systems, this wakeup is the only time the server will terminate in respons
a stop command. Default is 60.

HouseKeeping 5

25.26. Inet_Mode *global*

Determines whether INET-domain sockets will be monitored on startup. Overridden by the command-line
parameter —i. Default is Yes.

25.27. IpHead *global*

Implements the domain/IP session qualifiers so that only the first IpQuad dot—quads of the IP address are
used to qualify the session ID. The default is 1. This is a slight compromise on security, but it allows
non-cookie—accepting browsers, like AOL's V2.0, to use multiple proxy servers.

DomainTail is preferable unless one of your HTTP servers does not do host name lookups. Default is No,
and DomainTail must be set to No for it to operate.

IpHead Yes

25.28. IpQuad *global*

The number of dot—quads that IpHead will look at. Default is 1.

IpQuad 2

25.23. HammerLock *global* 72

Interchange Documentation (Full)

25.29. Locale *global*

Sets the global Locale for use in error messages. Normally set from a file's contents, as in the example
before:

Locale <locale.error

25.30. LockoutCommand *global*

The name of a command (as it would be entered from the shell) that will lock out the host IP of an offending
system. The IP address will be substituted for the first occurrence of the string %s. This will be executed witl
the user ID that Interchange runs under, so any commands that require root access will have to be wrapped
with an SUID program.

On Linux, a host may be locked out with:
ipfwadm -1 —i deny —S %s

This would require root permissions, however, under normal circumstances. Use sudo or another method to
wrap and allow the command.

A script can be written which modifies an appropriate access control file, such as .htaccess for your CGI
directory, to do another level of lockout. A simple command line containing perl -0777 —npi —e

's/deny/deny from %s\ndeny/' /home/me/cgi-bin/.htaccess would work as well
(remember, the %s will become the IP address of the offending user).

LockoutCommand lockout %s

25.31. LockType *global*

Allows selection of file locking method used throughout Interchange. Options are 'flock’, 'fcntl', and 'none'.
Added in 4.7.0.

Default is flock. See the flock(2) manpage for details.
The fentl setting is needed for NFS filesystems; for NFS—based locking to work, the NFS lock daemon
(lockd) must be enabled and running on both the NFS client and server. Locking with fcntl works on Linux

and should work on Solaris, but is not guaranteed to work on all OSes.

The none setting turns off file locking entirely, but that is never recommended. It might be useful to check if
locking is causing hangs on the system.

If you are only accessing sessions on an NFS—-mounted directory but the rest of Interchange is on the local

filesystem, you can instead set the SessionType catalog directive to 'NFS', which enables fcntl locking for
sessions only on a per—catalog basis.

25.32. Mall *global*

25.29. Locale *global* 73

Interchange Documentation (Full)

Set to Yes to issue cookies only for the current catalog's script. By default, when Interchange issues a cooki
it does so for the base domain. This will allow multiple catalogs to operate on the same domain without
interfering with each others session ID.

A yes/no directive.

Mall Yes

25.33. MaxServers *global*

The maximum number of servers that will be spawned to handle page requests. If more than MaxServers
requests are pending, they will be queued (within the defined capability of the operating system, usually five
pending requests) until the number of active servers goes below that value.

MaxServers 4

Default is 10.

25.34. NoAbsolute *global*

Whether Interchange [file ...] and other tags can read any file on the system (that is readable by the
user id running the Interchange daemon). The default is No, which allows any file to be read. This should be
changed in a multi-user environment to minimize security problems.

NoAbsolute Yes

25.35. PIDcheck *global*

If non—zero, enables a check of running Interchange processes during the housekeeping routine. If a proces
has been running (or is hung) for longer than PIDcheck seconds then a kill =9 will be issued and the server
count decremented. During the housekeeping routine, the number of servers checked by MaxServers will
be recounted based on PID files.

Default is 0, disabling the check.

PIDcheck 300

If have long-running database builds, this needs to be disabled. Set it to a high value (perhaps 600, for 10
minutes), or use the offline script.

25.36. PIDfile *global*

The file which will contain the Interchange server process ID so that it can be read to determine which proce
should be sent a signal for stopping or reconfiguring the server.

PIDfile /var/run/interchange/interchange.pid

This file must be writable by the Interchange server user ID.

25.33. MaxServers *global* 74

Interchange Documentation (Full)

25.37. Profiles *global*

Names a file (or files) which contain OrderProfile and SearchProfile settings that will apply for all
catalogs.

Profiles etc/profiles.common

25.38. SafeUntrap *global*

Sets the codes that will be untrapped in the Safe.pm module and used for embedded Perl and conditional
operations. View the Safe.pm documentation by typing perldoc Safe at the command prompt. The

default is ftfile sort, which untraps the file existence test operator and the sort operator. Define it as

blank to prevent any operators but the default restrictive ones.

SafeUntrap ftfile sort ftewrite rand

25.39. SendMailProgram *global*

Specifies the program used to send email. Defaults to '/ust/lib/sendmail'. If it is not found at startup,
Interchange will return an error message and refuse to start.

SendMailProgram /bin/mailer

A value of 'none' will disable the sending of emailed orders. Orders must be read from a tracking file, log, or
by other means.

25.40. SOAP *global*

If set to Yes, allows handling of SOAP rpc requests.

25.41. SOAP_Host

The list of hosts that are allowed to connect to for SOAP rpc requests. Default is localhost 127.0.0.1.

25.42. SOAP_MaxRequests

The maximum number of requests a SOAP rpc server will handle before it commits suicide and asks for a
replacement server. This prevents runaway memory leaks.

25.43. SOAP_Perms

The permissions that should be set on a SOAP UNIX-domain socket. Default is 0660, which allows only
programs running as the same UID as Interchange to access the socket.

25.37. Profiles *global* 75

Interchange Documentation (Full)

25.44. SOAP_Socket

A list of sockets which should be monitored for SOAP requests. If they fit the form
NNN.NNN.NNN.NNN:PPPP, they are IP addresses and ports for monitoring INET—-domain sockets, any
other pattern is assumed to be a file name for monitoring in the UNIX domain.

SOAP_Socket 12.23.13.31:7770 1.2.3.4:7770 /var/run/interchange/soap

25.45. SOAP_StartServers

The number of SOAP servers which should be started to handle SOAP requests. Default is 1.

SOAP_StartServers 10

25.46. SocketFile *global*

The name of the file which is used for UNIX—domain socket communications. Must be in a directory where
the Interchange user has write permission.

SocketFile /var/run/interchange/interchange.socket

Default is etc/socket or the value of the environment variable MINIVEND_SOCKET. If set, it will
override the environment. It can be set on the command line as well:

bin/interchange —r SocketFile=/tmp/interchange.socket

25.47. SocketPerms *global*

The permissions (prepend a 0 to use octal notation) that should be used for the UNIX-domain socket.
Temporarily set this to 666 on the command line to debug a permission problem on vlink.

bin/interchange —r SocketPerms=0666

25.48. StartServers

The number of Interchange page servers which should be started to handle page requests when in PreFork
mode. Default is 1.

SOAP_StartServers 10

25.49. SubCatalog *global*

Allows definition of a catalog which shares most of the characteristics of another catalog. Only the directives
that are changed from the base catalog are added. The parameters are: 1) the catalog ID, 2) the base catals
ID, 3) the directory to use (typically the same as the base catalog), and 4) the SCRIPT_NAME that will
trigger the catalog. Any additional parameters are aliases for the SCRIPT_NAME.

The main reason that this would be used would be to conserve memory in a series of stores that share mos
the same pages or databases.

25.44. SOAP_Socket 76

Interchange Documentation (Full)

SubCatalog sample2 sample /usr/catalogs/sample /cgi—bin/sample2

25.50. SysLog *global*

Set up syslog(8) error logging for Interchange.

SysLog command /usr/bin/logger
SysLog tag intl

SysLog alert local3.warn
SysLog warn local3.info
SysLog info local3.info
SysLog debug local3.debug

This would cause global errors to be logged with the command:

lusr/bin/logger -t intl —p local3.alert

and cause system log entries something like:

Oct 26 17:30:11 bill int1: Config 'co’ at server startup

Oct 26 17:30:11 bill intl: Config ‘homefn' at server startup

Oct 26 17:30:11 bill int1: Config 'simple’ at server startup

Oct 26 17:30:11 bill int1: Config 'test' at server startup

Oct 26 17:30:13 bill intl: START server (2345) (INET and UNIX)

This would work in conjunction with a UNIX syslogd.conf entry of:

Log local3 stuff to Interchange log
local3.* Ivar/log/interchange.log

A custom wrapper can be created around it to get it to behave as desired. For instance, if you didn't want to
use syslog but instead wanted to log to a database (via DBI), you could create a Perl script named
"logdatabase" to log things:

#!/usr/bin/perl

my $script_name = "logdatabase";
use DBI;

use Getopt::Std;

getopts('d:p:T:k:")
or die "$script_name options: $@\n";

use vars qw/$opt_d $opt_p Sopt_T $opt_k/;
my $dsn = $opt_d || SENV{DBI_DSN};
my $template = $opt_T
|| "insert into log values (‘~~KEY~~', '~~LEVEL~~', '~~MSG~~")";

my $dbh = DBI->connect($dsn)
or die "$script_name cannot connect to DBI: $DBI::errstr\n";

my %data;
$data{KEY} = Sopt_k || *;

local ($/);

25.50. SysLog *global* 77

Interchange Documentation (Full)

$data{MSG} = <>;
$data{LEVEL} = $opt_p || 'interchange.info’;
$template =~ s\~\~(\w+)\~\~/$dbh—>quote($data{$1})/;

my $sth = $dbh—>prepare($template)
or die "$script_name error executing query: $template\n";

$sth—>execute()
or die "$script_name error executing query: $template\n";

exit;

25.51. TcpHost *global*

When running in INET mode, using tlink, specifies the hosts that are allowed to send/receive transactions
from any catalog on this Interchange server. Can be either an name or IP number, and multiple hosts can b
specified in a space-separated list. Default is localhost.

TcpHost localhost secure.domain.com

25.52. TcpMap *global*

When running in INET mode, using tlink or the internal HTTP server, specifies the port(s) which will be
monitored by the Interchange server. Default is 7786.

To use the internal HTTP server (perhaps only for password—protected queries), a catalog may be mapped
port. If three catalogs were running on the server www.akopia.com, named simple, sample, and
search, the directive might look like this:

TcpMap 7786 — 7787 simple 7788 sample 7789 search

Note: To map large numbers of ports, use the <<MARKER here document notation in interchange.cfg. With
this in effect, the internal HTTP server would map the following addresses:

* 7786 mv_admin
* 7787 simple
* 7788 sample
* 7789 search

Note: This does not pertain to the use of tlink, which still relies on the CGI SCRIPT_PATH. To enable
this, the SCRIPT_PATH aliases /simple, /sample, etc. must be set in the Catalog directive. This would look
like:

Catalog simple /home/interchange/catalogs/simple /cgi—bin/simple /simple
To bind to specific IP addresses, add them in the same fashion that they would as an Apache Listen directiv

TcpMap <<EOF
127.0.0.1:7786 -
www.akopia.com:7787 -

EOF

25.51. TcpHost *global* 78

Interchange Documentation (Full)

Note: As usual, the EOF should be at the beginning of a line with no leading or trailing whitespace.

25.53. TemplateDir *global*

Sets a directory which will be searched for pages if not found in the user's pages directory. Interchange use:
this; use it to supply some default pages so the user will not have them in their directory.

TemplateDir /usr/local/interchange/default_pages

The user's page, if it exists, will take precedence. There is also a catalog—specific version of this directive. If
page is found in that directory (or directories), it will take precedence.

25.54. TolerateGet *global*

Set to 'Yes' to enable parsing of both GET data and POST data when a POST has been submitted. The def
is 'No', which means that GET data is ignored during a POST. Unfortunately this has to be a global setting
because at URL parse time, the Interchange daemon doesn't yet know which catalog it's dealing with (due t
catalog aliases, etc.).

25.55. UrlSepChar *global*

Sets the character which separates form parameters in Interchange—generated URLs. Default is &.

25.56. Unix_Mode *global*

Determines whether the UNIX-domain socket will be monitored on startup. Overridden by the
command-line parameter —u. Default is Yes.

25.57. UserTag *global*

This defines a UserTag which is global in nature, meaning not limited by the Safe.pm module, and is is
available to all Interchange catalogs running on the server. Otherwise, this is the same as a catalog UserTa

25.58. Variable *global*

Defines a global variable that will be available in all catalogs with the notation @ @VARIABLENAME@ @ .
Variable identifiers must begin with a capital letter, and can contain only word characters (A-Z,a-z,0-9 and
underscore). They are case—sensitive. If using the ParseVariables directive, only variables in ALL

CAPS will be parsed. These are substituted first in any Interchange page, and can contain any valid
Interchange tags including catalog variables.

Variable DOCUMENT_ROOT /usr/local/etc/httpd/htdocs

If a variable is called with @_VARIABLE_@, and there is no catalog Variable with its name, the global
Variable value will be inserted.

25.53. TemplateDir *global* 79

Interchange Documentation (Full)

There are several standard variables which should not be used:

MV_FILE

Name of the last file read in, as in [file ...] or an externally located perl routine.
MV_NO_CRYPT

Set this to 1 to disable encrypted passwords for the AdminUser.

MV_PAGE

Name of the last page read in, as in the page called with mv_nextpage or mv_orderpage.
CURRENCY, MV_CURRENCY

The current locale for currency.

LANG, MV_LANG

The current locale for language.

25.59. VarName *global*

Sets the hames of variables that will be remapped to and from the URL when Interchange writes it. For
instance, to display the variable mv_session_id as session in the users URL:

VarName mv_session_id session

The default can also be set in the etc/varnames file after the first time Interchange is run. Setting it in
interchange.cfqg is probably better for clarity.

There is also a catalog—specific version of this setting.

25.59. VarName *global* 80

26. catalog.cfg

Each catalog must have a catalog.cfg file located in its base catalog directory. It contains most of the
configurable parameters for Interchange. Each is independent from catalog to catalog.

Additional configuration techniques are available in the catalog.cfg file. First, set a Variable and use
its results in a subsequent configuration setting if ParseVariables is on:

Variable SERVER_NAME www.akopia.com
Variable CGI_URL /cgi—-bin/demo

ParseVariables Yes
VendURL http://__ SERVER_NAME CGI_URL__
ParseVariables No

Define subroutine watches

Almost any configuration variable can be set up to be tied to a subroutine if the Tie::Watch module is
installed. It uses a notation like the <<HERE document, but <& HERE is the notatigdmt&ebange

Programming for details.

26.1. Programming Watch Points in catalog.cfg

Almost any configuration variable can be set up to be tied to a subroutine if the Tie::Watch module
installed. It uses a notation like the <<HERE document, but <&HERE is the notation. Here is a simple case:

MailOrderTo orders@akopia.com
MailOrderTo <&EOF
sub {
my($self, $default) = @_;
if($Values—>{special_handling}) {
return 'vip@akopia.com’;

}
else {
return $default;

}
}
EOF

When the order is mailed out, if the user has a variable called special_handling set in their session
(from UserDB, perhaps), the order will be sent to 'vip@akopia.com.' Note the single quotes to prevent
problems with the @ sign. Otherwise, the order will get sent to the previously defined value of
orders@akopia.com.

If the configuration value being watched is a SCALAR, the subroutine gets the following call:
&{$subref}(SELF, PREVIOUS_VALUE)

The subroutine should simply return the proper value.

SELF is a reference to the Tie::Watch object (read its documentation for what all it can do) and

PREVIOUS VALUE is the previously set value for the directive. If set after the watch is set up, it will simply
have the effect of destroying the watch and having unpredictable effects. (In the future, a "Store" routine ma

26. catalog.cfg 81

Interchange Documentation (Full)

be able to be set up that can subsequently set values).

If the configuration value being watched is an ARRAY, the subroutine gets the following call:

&{$subref}(SELF, INDEX, PREVIOUS_VALUE)

INDEX is the index of the array element being accessed. Setting up watch points on array values is not
recommended. Most Interchange subroutines call arrays in their list context, and no access method is provic
for that.

If the configuration value being watched is a HASH, the subroutine gets the following call:

&{$subref(SELF, KEY, PREVIOUS_VALUE)

KEY is the index into the hash, an example of HASH type Interchange configuration values. NOTE: The
following is not recommended for performance reasons. The Variable is a commonly used thing and should
not bear the extra overhead of tieing, but it illustrates the power of this operation:

Variable TESTIT Unwatch worked.

Variable <& EOV
sub {
my ($self, $key, $orig) = @_;
if($key eq 'TESTIT") {
only the first time
if($Scratch—>{$key}++) {
$self->Unwatch();
return $orig—>{TESTIT};

}
else {

return "Tie::Watch works! —— name=$Values—>{name}";
}

}
else {

return $orig—>{$key};
}

}
EOV

The firsttime _ TESTIT__ is called for a particular user, it will return the string "Tie::Watch works! ——
name=" along with their name set in the session (if that exists). Any other variables will receive the value the

they were set to previously. Once the TESTIT key has been accessed for that user, the watch is dropped uf
the next access.

26.2. Configuration Directives in catalog.cfg

All directives except MailOrderTo and VendURL have default values and are optional, though most
catalogs will want to configure some of them.

26.3. ActionMap

Allows setting of Interchange actions, usually with a Perl subroutine. Actions are page names like:

process Perform a processing function

26.2. Configuration Directives in catalog.cfg 82

Interchange Documentation (Full)

order Order items
scan Search based on path info
search Search based on submitted form variables

These are the standard supplied actions for Interchange. They can be overwritten with user—defined versior
if desired. For example, to ignore the order action, set:

ActionMap order sub {return1}
When the leading part of the incoming path is equal to order, it will trigger an action. The page name will
be shifted up, and the order stripped from the page name. So this custom order action would essentially
perform a no-op, and a URL like:

 Go to the next page
would be the equivalent of "[area nextpage]." If the action does not return a true (non-zero, non-blank) stat
no page will be displayed by Interchange, not even the special missing page. A response may also be
generated via Perl or MVASP.

The standard process action has a number of associated FormAction settings. Besides using Perl,
Interchange tags may be used in an action, though they are not nearly as efficient.

26.4. AlwaysSecure

Determines whether checkout page operations should always be secure. Set it to the pages that should alw
be secure, separated by spaces and/or tabs.

AlwaysSecure ord/checkout

26.5. AsciiTrack

A file name to log formatted orders in. Unless preceded by a leading /', will be placed relative to the catalog
directory. Disabled by default.

AsciiTrack etc/tracking.asc

If a Route is set up to supplant, this is ignored.

26.6. Autoend

Sets an action that is automatically performed at the end every access. It is performed after any page parsir
occurs, just before the transaction ends. See Autoload.

26.7. Autoload

Sets an action that is automatically performed for every access. It is performed before any page parsing
occurs, and before the action or page is even determined. Can contain ITL tags or a global subroutine name
the return value is true, a normal display of $CGI->{mv_nextpage} will occur —— if it returns a false (zero,
undef, or blank) value, no page will be processed.

26.4. AlwaysSecure 83

Interchange Documentation (Full)

As an example, to remap any mv_nextpage accesses to the private subdirectory of pages, set:

Autoload [perl] $CGI->{mv_nextpage} =~ s:"private/:public/:; [/perl]

26.8. AutoModifier

Sets an attribute in a shopping cart entry to the field of the same name in the ProductsFile pertaining to
this item. This is useful when doing shipping calculations or other embedded Perl that is based on item
attributes. To set whether an item is defined as "heavy" and requires truck shipment, set:

AutoModifier heavy

When an item is added to the shopping cart using Interchange's routines, the heavy attribute will be set to tt
value of the heavy field in the products database. In the default demo that would be products. Any
changes to ProductFiles would affect that, of course.

Some values are used by Interchange and are not legal:

mv_mi
mv_si
mv_ib
group
code
quantity
item

26.9. AutoVariable

Specifies directives which should be translated to Variable settings. For scalars, the directive name become
the Variable name and yields its value, i.e. DescriptionField becomes __ DescriptionField

which would by default be description. Array variables have a _N added, where _N is the ordinal index, i.e.
ProductFiles becomes __ ProductFiles 0, ProductFiles_1 , etc. Hash variables have a

_KEY added, i.e. SpecialPage becomes __ SpecialPage_missing__,

__SpecialPage_violation__, etc. Doesn't handle hash keys that have non—-word characters or

whitespace. Only single-level arrays and hashes are translated properly.

26.10. CommonAdjust

Settings for Interchange pricing. See Chained pricing.

CommonAdjust pricing:g2,95,910,925, ;products:price, ==size:pricing

26.11. ConfigDir

The default directory where directive values will be read from when using the <file notation. Default is
config. The name is relative to the catalog directory unless preceded by a /.

ConfigDir variables

This can be changed several times in the catalog.cfg file to pick up values from more than one directory.
Another possibility is to use a Variable setting to use different templates based on a setting:

26.8. AutoModifier 84

Interchange Documentation (Full)

Variable TEMPLATE blue

ParseVariables Yes

ConfigDir templates/_ TEMPLATE___
ParseVariables No

Variable MENUBAR <menubar
Variable LEFTSIDE <leftside
Variable BOTTOM <bottom
ConfigDir config

This will pick the templates/blue template. If TEMPLATE is set to red, it would read the variables
from templates/red.

26.12. CookieDomain

Allows a domain to be set so that multiple servers can handle traffic. For example, to use server addresses
secure.yourdomain.com and www.yourdomain.com, set it to:

CookieDomain .yourdomain.com

More than one domain can be set. It must have at least two periods or browsers will ignore it.

26.13. CookieLogin

Allows users to save their username/password (for Vend::UserDB) in a cookie. Expiration is set by
SaveExpire and is renewed each time they log in. To cause the cookie to be generated originally, the CGI
variable mv_cookie_password or mv_cookie _username must be set. The former causes both

username and password to be saved; the latter just the username.

CookieLogin Yes

Default is No.

26.14. Cookies

Determines whether Interchange will send (and read back) a cookie to get the session ID for links that go
outside the catalog. Allows arbitrary HREF links to be placed in Interchange pages, while still saving the
contents of the session. The default is Yes.

Cookies Yes

If the Cookies directive is enabled, and mv_save_session is set upon submission of a user form (or in the
CGl variables through a Perl GlobalSub), the cookie will be persistent for the period defined by
SaveExpire.

Note: This should almost always be "Yes."

Caching, timed builds, and static page building will never be in effect unless this directive is enabled.

26.12. CookieDomain 85

Interchange Documentation (Full)

26.15. CreditCardAuto

If set to Yes, enables the automatic encryption and saving of credit card information. In order for this to work
properly, the EncryptProgram directive must be set to properly encode the field. The best way to set
EncryptProgram is with PGP in the ASCII armor mode. This option uses the following standard fields on
Interchange order processing forms:

mv_credit_card_number

The actual credit card number, which will be wiped from memory after checking to see if it is a valid Amex,
Visa, MC, or Discover card number. This variable will never be carried forward in the user session.

mv_credit_card_exp_all

The expiration date, as a text field in the form MM/YY (will take a four—digit year as well). If it is not
present, the fields mv_credit_card_exp_month and mv_credit_card_exp_year are looked at. It

is set by Interchange when the card validation returns, if not previously set.

mv_credit_card_exp_month

The expiration date month, used if the mv_credit_card_exp_all field is not present. It is set by
Interchange when the card validation returns, if not previously set.

mv_credit_card_exp_year

The expiration date year, used if the mv_credit_card_exp_all field is not present. It is set by
Interchange when the card validation returns, if not previously set.

mv_credit_card_error

Set by Interchange to indicate the error if the card does not validate properly. The error message is not too
enlightening if validation is the problem.

mv_credit_card_force

Set this value to 1 to force Interchange to encrypt the card despite its idea of validity. Will still set the flag for
validity to 0 if the number/date does not validate. Still won't accept badly formatted expiration dates.

mv_credit_card_separate

Set this value to 1 to cause Interchange encrypt only the card number and not accompany it with the
expiration date and card type.

mv_credit_card_info
Set by Interchange to the encrypted card information if the card validates properly. If PGP is used in ASCII
armor mode, this field can be placed on the order report and embedded in the order email, replete with

markers. This allows a secure order to be read for content, without exposing the credit card number to risk.

mv_credit_card_valid

26.15. CreditCardAuto 86

Interchange Documentation (Full)

Set by Interchange to true, or 1, if the the card validates properly. Set to 0 otherwise.

PGP is recommended as the encryption program, though remember that U.S. commercial organizations ma
require a license for RSA. Interchange will work with GPG, the Gnu Privacy Guard.

CreditCardAuto Yes

26.16. CustomShipping

If not blank, causes an error log entry if the shipping file entry is not found. Not otherwise used for shipping.
See SHIPPING for how to go about doing that.

CustomShipping Yes

26.17. Database

Definition of an arbitrary database, in the form "Database database file type," where "file" is the name of an
ASCII file in the same format as the products database. The file is relative to VendRoot. Records can be
accessed with the [data database field key] tag. Database names are restricted to the

alphanumeric characters (including the underscore), and it is recommended that they be either all lower or &
upper case. See DATABASES.

Database reviews reviews.txt CSV

26.18. DatabaseDefault

Defines default parameters for a database. This can be used to set a default WRITE_CONTROL setting, se
default USER or PASSWORD, etc. It accepts any scalar setting, which means all except:

ALTERNATE_* BINARY COLUMN_DEF DEFAULT FIELD_ALIAS FILTER_* NAME NUMERIC
POSTCREATE WRITE_CATALOG

This default setting is made when the table is initially defined, i.e. explicit settings for the database itself
override the defaults set.

DatabaseDefault ~WRITE_CONTROL 1
DatabaseDefault WRITE_TAGGED 1

This setting must be made *before* the database is defined. To reset its value to empty, use the Replace
directive.

Replace DatabaseDefault

26.19. DefaultShipping

This sets the default shipping mode by initializing the variable mv_ship_mode. If not set in
catalog.cfg, it is default.

DefaultShipping UPS

26.16. CustomShipping 87

Interchange Documentation (Full)

Somewhat deprecated, the same thing can be achieved with:

ValuesDefault mv_shipmode UPS

26.20. DescriptionField

The field that will be accessed with the [item—description] element.

DescriptionField description
Default is description. It is not a fatal error if this field does not exist. This is especially important for

on-the—fly items. If there is an attribute set to the same name as DescriptionField, this will be used for
display.

26.21. DirConfig

DirConfig allows you to batch-set a bunch of variables from files. The syntax:
DirConfig directive—name directory—glob

directive—name is usually Variable, but could be any hash—-based directive. (No other standard
directives currently make sense to set this way.)

directory—glob is a filespec that could encompass multiple directories. Files are ignored.

The directories are read for file *names* that contain only word characters, i.e. something that would be a
valid Variable. (This alone might make it not suitable for other uses, but picking up the junk from the
in—directory—backup-file people would be intolerable.)

Then the contents of the file is used to set the variable of the file name.

The source file name is kept in $Vend::Cfg—>{DirConfig}{Variable {VARNAME}, for use if
dynamic_variables Pragma is set.

Pragma dynamic_variables enables dynamic updating of variables from files. Pragma
dynamic_variables_files_only restricts dynamic variables to files only —— otherwise variables are
dynamically read from the VarDatabase definition as well.

With dynamic variables, all @ _VARIABLE_@ and _ VARIABLE _ settings are checked first to see if the
source file is defined. If there is a key present, even if its contents are blank, it is returned. Example: in the
case of this catalog.cfg entry:

DirConfig Variable templates/foundation/regions

If the file NOLEFT_TOP is present at catalog config time, _ NOLEFT_TOP__ will equal [include
templates/foundation/regions/INOLEFT_TOP].

26.20. DescriptionField 88

Interchange Documentation (Full)

26.22. DisplayErrors

If the administrator has enabled DisplayErrors globally, setting this to "Yes" will display the error returned
from Interchange in case something is wrong with embedded Perl programs, tags, or Interchange itself.
Usually, this will be used during development or debugging. Default is No.

DisplayErrors Yes

26.23. DynamicData

When set to one or more Interchange database identifiers, any pages using data items from the specified
database(s) will not be cached or built statically. This allows dynamic updating of certain arbitrary databases
(even the products database) while still allowing static/cached page performance gains on pages not using
those data items.

DynamicData inventory

Overridden by [tag flag build][/tag], depending on context.

26.24. EncryptProgram

Contains a program command line specification that indicates how an external encryption program will work
Two placeholders, %p and %f, are defined, which are replaced at encryption time with the password and
temporary file name respectively. See Order Security. This is separate from the PGP directive, which
enables PGP encryption of the entire order.

If PGP is the encryption program (Interchange determines this by searching for the string pgp in the
command string), no password field or file field need be used. The field mv_credit_card_number will
never be written to disk in this case.

EncryptProgram /usr/local/bin/pgp —feat sales@company.com

If the order Route method of sending orders is used (default in the demo), this sets the default value of the
encrypt_program attribute.

26.25. ErrorFile

This is where Interchange will write its runtime errors for THIS CATALOG ONLY. It can be shared with
other catalogs or the main Interchange error log, but if it is root-based, permission to write the file is require

ErrorFile /home/interchange/error.log

26.26. ExtraSecure

Disallows access to pages which are marked with AlwaysSecure unless the browser is in HTTPS mode. A
Yes/No directive, the default is 'No.'

ExtraSecure Yes

26.22. DisplayErrors 89

Interchange Documentation (Full)

26.27. Filter

Assigns one or more filters (comma separated) to be automatically applied to a variable.

As an example, multiple form variable submissions on the same page come back null-separated, like
'value1l\Ovalue2\Ovalue3'. To automatically change those nulls to spaces, you could use this directive:

Filter mail_list null_to_space

Of course you could just as easily use the regular [filter] tag on the page if the filter is only going to be used
a few places.

See the ictags document for more information, including a complete list of filters.

26.28. FormAction

Allows set up of a form action (like the standard ones return, submit, refresh, etc.). It requires a
Perl subroutine as a target:

FormAction foo <<EOR
sub {
$CGI->{mv_nextpage} = 'bar’;

}
EOR

If it returns a true (non-zero, non—-empty) value, Interchange will display the page defined in
$CGI->{mv_nextpage}. Otherwise, Interchange will not display any page. The default Interchange actions

can be overridden if desired. There is also a global version of this directive, which is overridden if a
catalog—specific action exists.

26.29. Formlgnore

Set to the name(s) of variables that should not be carried in the user session values. Must match exactly an
are case sensitive.

Formignore mv_searchtype
26.30. Fractionalltems

Whether items in the shopping cart should be allowed to be fractional, i.e., 2.5 or 1.25. Default is No.

Fractionalltems Yes

26.31. Glimpse

The pathname for the glimpse command, used if glimpse searches are to be enabled. To use
glimpseserver, the —C, -J, and -K tags must be used.

Glimpse /usr/local/bin/glimpse —C —J srch_engine —K2345

26.28. FormAction 90

Interchange Documentation (Full)

26.32. History

How many of the most recent user clicks should be stored in the session history. Default is O.

26.33. HTMLsuffix

The file extension that will be seen as a page in the pages directory. Default is .html.

HTMLsuffix .htm

26.34. ImageAlias

Aliases for images, ala Apache/NCSA, ScriptAlias, and Alias directives. Relocates images based in a
particular directory to another for Interchange use; operates after ImageDir. Useful for editing Interchange
pages with an HTML editor. Default is blank.

ImageAlias /images/ /thiscatalog/images/

26.35. ImageDir

The directory where all relative IMG and INPUT source file specifications are based. IT MUST HAVE A
TRAILING / TO WORK. If the images are to be in the DocumentRoot (of the HTTP server or virtual

server) subdirectory images, for example, use the ImageDir specification '/images/'. This would change
SRC="order.qgif" to SRC="/images/order.gif" in IMG and INPUT tags. It has no effect on other SRC tags.

ImageDir /images/

Can be set in the Locale settings to allow different image sets for different locales (MV3.07 and up).

26.36. ImageDirlnternal

A value for ImageDir only when the internal HTTP server is in use. It must have a trailing / to work, and
should always begin with a fully—qualified path starting with http://.

ImageDirinternal http://www.server.name/images/

26.37. ImageDirSecure

A value for ImageDir only when the pages are being served via HTTPS. It must have a trailing / to work,
and should always begin with a fully—qualified path starting with http://.

ImageDirSecure /secure/images/

This is useful if using separate HTTPS and HTTP servesr, and cannot make the image directory path heads
match.

26.32. History 91

Interchange Documentation (Full)

26.38. Locale

Sets the special locale array. Tries to use POSIX setlocale based on the value of itself, then tries to accept
a custom setting with the proper definitions of mon_decimal_point, thousands_sep, and
frac_digits, which are the the only international settings required. Default, if not set, is to use
US-English settings.
Example of the custom setting:
Locale custom mon_decimal_point , mon_thousands_sep . frac_digits O
Example of POSIX setlocale for France, if properly aliased:

Locale fr

See setlocale(3) for more information. If embedded Perl code is used to sort search returns, the
setlocale() will carry through to string collation.

See Internationalization.

26.39. LocaleDatabase

Set to the Interchange database identifier of a table that contains Locale settings. These settings add on to
and overwrite any that are set in the catalog configuration files, including any include files.

Database locale locale.asc TAB
LocaleDatabase locale

26.40. MailOrderTo

Specifies the e-mail address to mail completed orders to.
MailOrderTo orders@xyzcorp.com

If 'none' is specified, no e-mailed order will be sent.

26.41. NoCache

The names of Interchange pages that are not to be built statically if STATIC PAGE BUILDING is in use. If
the name is a directory, no pages in that directory (or any below it) will be cached or built statically.

NoCache ord
NoCache special

26.42. Nolmport

When set to one or more Interchange database identifiers, those database(s) will never be subject to import
Useful for SQL databases or databases that will "never" change.

26.38. Locale 92

Interchange Documentation (Full)

Nolmport inventory

26.43. NonTaxableField

The name of the field in the products database that is set (to 1 or Yes) if an item is not to be taxed. Intercha
will log an error and tax it anyway if the field doesn't exist in the database. Blank by default, disabling the
feature.

NonTaxableField wholesale

26.44. OfflineDir

The location of the offline database files for use with the Interchange offline database build command. Set tc
"offline" as the default, and is relative to VendRoot if there is no leading slash.

OfflineDir /usr/data/interchange/offline

26.45. OnFly

Enables on—-the—fly item additions to the shopping cart. If set to the name of a valid UserTag, that tag
definition will be used to parse and format the item with the following call:

$item = Vend::Parse::do_tag($Vend::Cfg—>{OnFly},
$code,
$quantity,
$fly[$i],
);

$fly[$]] is the value of mv_order_fly for that item. An onfly tag is provided by Interchange. See
<On-the—fly> ordering.

26.46. OrderCounter

The name of the file (relative to catalog root if no leading /) that maintains the order number counter. If not
set, the order will be assigned a string based on the time of the order and the user's session number.

OrderCounter etc/order.number

Bear in mind that Interchange provides the order number as a convenience for display, and that no internal
functions depend on it. Custom order number routines may be defined and used without fear of consequenc

If a Route is set up to supplant and the counter attribute is set there, this is ignored.

26.47. OrderLineLimit

The number of items that the user is allowed to place in the shopping cart. Some poorly-mannered robots n
"attack" a site by following all links one after another. Some even ignore any robots.txt file that may

have been created. If one of these bad robots orders several dozen or more items, the time required to save
restore the shopping cart from the user session may become excessive.

26.43. NonTaxableField 93

Interchange Documentation (Full)

If the limit is exceeded, the command defined in the Global directive LockoutCommand will be executed
and the shopping cart will be emptied. The default is 0, disabling the check. Set it to a number greater than 1
number of line items a user is ever expected to order.

OrderLineLimit 50

26.48. OrderProfile

Allows an unlimited number of profiles to be set up, specifying complex checks to be performed at each of ti
steps in the checkout process. The files specified can be located anywhere. If relative paths are used, they
relative to the catalog root directory.

OrderProfile etc/profiles.order etc/profiles.login
The actions defined here are also used for mv_click actions if there is no action defined in scratch space.
They are accessed by setting the mv_order_profile variable to the name of the order profile. Multiple
profiles can reside in the same file, if separated by _ END___ tokens, which must be on a line by themselves
The profile is named by placing a name following a __ NAME___ pragma:

__NAME__ billing

The _ NAME__ must begin the line, and be followed by whitespace and the name. The search profile can
then be accessed by <mv_order_profile="billing">. See Advanced Multi-level Order Pages.

26.49. OrderReport

The location of the simple order report file. Defaults to etc/report.

OrderReport /data/order—form

26.50. PageDir

Location of catalog pages. Defaults to the pages subdirectory in the VendRoot directory.
PageDir /data/catalog/pages

Can be set in the Locale settings to allow different page sets for different locales.

26.51. PageSelectField

Sets a products database column which can be used to select the on—the—fly template page. This allows
multiple on-the—fly pages to be defined. If the field is empty (no spaces), the default flypage will be used.

PageSelectField display_page

26.52. ParseVariables

26.48. OrderProfile 94

Interchange Documentation (Full)

Determines whether global and catalog variables will be parsed in the configuration file. Default is No. The
foundation catalog.cfg turns ParseVariables on and usually expects it to be on.

Variable STORE_ID topshop
ParseVariables Yes

StaticDir /home/__STORE_ID__ /www/cat
ParseVariables No

26.53. Password

The encrypted or unencrypted password (depending on Variable MV_NO_CRYPT) that will cause internal
authorization checks for RemoteUser to allow access.

Below is the encrypted setting for a blank password.

Password bAWoVkuzphOX.

26.54. PGP

If credit card information is to be accepted, and the e—mailed order will go over an insecure network to react
its destination, PGP security should be used. The key ring to be used must be for the user that is running th
Interchange server, or defined by the environment variable PGPPATH, and the key user specified must hav
key on the public key ring of that user.

PGP /usr/local/bin/pgp —feat orders@company.com
If this directive is non—null, the PGP command string as specified will be used to encrypt the entire order in
addition to any encryption done as a result if CreditCardAuto. If, for some reason, an error comes from
PGP, the customer will be given the special page failed.

If a Route is set up to supplant, this is ignored.

26.55. Pragma

Sets the default value of an Interchange pragma. The directive is set like this:
Pragma my_pragma_name

To enable a pragma for only a particular page, set it anywhere in the page:
[pragma my_pragma_name]

To disable a pragma for a particular page, set it anywhere in the page:
[pragma my_pragma_name 0]

Descriptions of each pragma follow.

dynamic_variables

dynamic_variables_file_only

26.53. Password 95

Interchange Documentation (Full)

no_html_parse
Disallows HTML tag parsing. This is a big parser performance gain and is enabled in the demo catalog.
When this pragma is set, you can't encapsulate Interchange tags inside HTML tags like this:

<P MV="if scratch something"> ... </P>
Note that a page with no HTML parsing is a good place to put a DTD (document type descriptor).
no_image_rewrite
Prevents image locations in pages from being altered by Interchange. Added in Interchange 4.7.0.

Interchange normally rewrites image locations to point to ImageDir. This applies to image locations
mentioned in , <input src="...">, <body background="...">, <table background="...">, and
<tr/th/td background="...">.

When this pragma is not set, the following tag:

Would, assuming an ImageDir set to /foundation/images, be transformed into:

When pragma no_image_rewrite is set, the tag would remain unchanged.
safe_data

By default Interchange does not allow data returned from databases to be reparsed for Interchange tags.
Setting the safe_data pragma eliminates this restriction.

If for some reason you want to have tags in your database, for example, to use [page ...] for catalog-interna
hyperlinks in your product descriptions, you need to enable safe_data. Some things to consider:

1. It may be better to use the safe_data attribute available to certain tags instead of the pragma, or
perhaps to use [pragma] for a whole page or [tag pragma] ... [/tag] for a small block, instead of a
catalog—wide Pragma directive.

2.1In any case it is strongly recommended that you surround the area with [restrict] ... [/restrict] tags to
allow only the specific (hopefully relatively safe) set of tags you expect to appear, such as [page] or
[area]. Expect security compromises if you allow [calc] or [perl], or other extremely powerful tags.

3. Be certain that you know everywhere the data in your database will be used. Will it always be
possible to reparse for tags? What about when it's used to create an emailed plain—text receipt — w
a literal '[page ...]' tag show up in the product description on the receipt? Would the desired output of
'' be any better in a plaintext situation? What if you access your database from
applications other than Interchange? You'll then have to decide what to do with such tags; perhaps
you can simply strip them, but will the missing tag output cause you any trouble?

In short, safe_data is disabled by default for a reason, and you should be very careful if you decide to enabl
it.

26.53. Password 96

Interchange Documentation (Full)

(Watch out for parse order with [tag pragma] or [restrict] when used with lists that retrieve data from the
database, as in [prefix—*] and the flypage. Loops parse before regular tags like [tag] and [restrict], and thus
aren't affected by it.)

strip_white

Set this to strip whitespace from the tops of HTML pages output by Interchange. Such whitespace usually
comes from Interchange tags at the top of the page. The pragma's purpose is mostly to make 'view source' |
the browser a slightly more tolerable experience.

Default is off; whitespace is unchanged.

26.56. PriceCommas

If no commas are desired in price numbers (for the [item—price] tag), set this to No. The default is to use
commas (or whatever is the thousands separator for a locale).

PriceCommas no

This is overridden if a Locale price_picture is set.

26.57. PriceDivide

The number the price should be divided by to get the price in units (dollars or such). The default is one. If
penny pricing is used, set it to 100.

PriceDivide 100

Can be set in the Locale settings to allow a price adjustment factor for different currencies.

26.58. PriceField

The field in the product database that will be accessed with the [item—price] element. Default is "price."

PriceField ProductPrice

Can be set in the Locale settings to allow different price fields for different currencies.

26.59. ProductDir

Location of the database files. Defaults to the products subdirectory of the VendRoot directory. May not be
set to an absolute directory unless NoAbsolute is defined as No.

ProductDir /data/catalog/for-sale

Most people never set this directive and use the default of products.

26.56. PriceCommas 97

Interchange Documentation (Full)

26.60. ProductFiles

Database tables that should be seen as the "products” database.

ProductFiles vendor_a vendor_b
The key thing about this is that each will be searched in sequence for a product code to order or an
[item—field] or [loop—field ...] to insert. The main difference between [item-field
....] and [item—data table ...] is this fall-through behavior.

Default is products.

26.61. ReadPermission and WritePermission

By default, only the user account that Interchange runs under (as set by the SETUID permission on vlink) ce
read and write files created by Interchange. WritePermission and ReadPermission can be set to
user, group, or 'world'.

ReadPermission group
WritePermission group

26.62. RemoteUser

The value of the HTTP environment variable REMOTE_USER that will enable catalog reconfiguration. HTTI
basic authentication must be enabled for this to work. Default is blank, disabling this check.

RemoteUser interchange

26.63. Replace

Causes a directive to be emptied and re—set (to its default if no value is specified). Useful for directives that
add to the value by default.

Replace NoCache ord special multi reconfig query

Capitalization must be exact on each directive.

26.64. Require

Forces a Perl module, global UserTag, or GlobalSub to be present before the catalog will configure. This
is useful when transporting catalogs to make sure they will have all needed facilities.

Require usertag email
Require globalsub form_mail
Require module Business::UPS

26.60. ProductFiles 98

Interchange Documentation (Full)

26.65. RobotLimit

The RobotLimit directive defines the number of consecutive pages a user session may access without a 30
second pause. If the limit is exceeded, the command defined in the Global directive LockoutCommand will
be executed and catalog URLs will be rewritten with host 127.0.0.1, sending the robot back to itself. The
default is 0, disabling the check.

RobotLimit 200

26.66. Route

Sets up order routes. See Custom Order Routing. There are examples in the demo simple.

26.67. SalesTax

If non-blank, enables automatic addition of sales tax based on the order form. The value is a
comma-separated list of the field names (as placed in order.html) in priority order, which should be used to
look up sales tax percentage in the salestax.asc database. This database is not supplied with Interchange.
It is typically received from a third party by quarterly or monthly subscription.

SalesTax zZip state

26.68. SalesTaxFunction

A Perl subroutine that will return a hash reference with the sales tax settings. This can be used to query a
database for the tax for a particular vendor:

SalesTaxFunction <<EOR
my $vendor_id = $Session—>{source};
my $tax = $TextSearch—>hash({
se => $vendor_id,
fi => 'salestax.asc/,
sf => 'vendor_code',
ml => 1000,
b
$tax = {} if ! $tax;
$tax—>{DEFAULT} = 0.0;
return $tax;
EOR

or simply produce a table:

SalesTaxFunction <<EOR
return {
DEFAULT => 0.0,
IL =>0.075,
OH => 0.065,
k
EOR

A DEFAULT value must always be returned or the function will be ignored.

26.65. RobotLimit 99

Interchange Documentation (Full)

26.69. SaveExpire

The default amount of time that a cookie will be valid (other than the MV_SESSION_ID cookie). The ones
used in Interchange by default are MV_USERNAME and MV_PASSWORD for the CookieLogin feature.
Specified the same as SessionExpire, with an integer number followed by one of minutes, hours,

days, or weeks.

SaveExpire 52 weeks

Default is 30 days.

26.70. ScratchDefault

The default scratch variable settings that the user will start with when their session is initialized. To disable
placing URL rewrite strings after the user has given a cookie, set:

ScratchDefault mv_no_session_id 1
ScratchDefault mv_no_count 1
ScratchDefault mv_add_dot_html 1

26.71. ScratchDir

The directory where temporary files will be written, notably cached searches and retired session IDs. Defaul
to tmp in the catalog directory.

ScratchDir Itmp

26.72. SearchProfile

Allows an unlimited number of search profiles to be set up, specifying complex searches based on a single
click. The directive accepts a file name based in the catalog directory if the path is relative:

SearchProfile etc/search.profiles

As an added measure of control, the specification is evaluated with the special Interchange tag syntax to
provide conditional setting of search parameters. The following file specifies a dictionary—based search in th
file 'dict.product":

__NAME__ dict_search

mv_search_file=dict.product

mv_return_fields=1

[if value fast_search]
mv_dict_limit=-1
mv_last=1

[/if]

__END__

The _ NAME__ is the value to be specified in the mv_profile variable on the search form, as in

<INPUT TYPE=hidden NAME=mv_profile VALUE="dict_search">

26.69. SaveExpire 100

Interchange Documentation (Full)

or with mp=profile in the one—click search.

[page scan se=Renaissance/mp=dict_search]Renaissance Art[/page]

Multiple profiles can reside in the same file, if separated by _ END__ tokens. _ NAME___ tokens should be
left-aligned, and __ END__ must be on a line by itself with no leading or trailing whitespace.

26.73. SecureURL

The base URL for secure forms/page transmissions. Normally it is the same as VendURL except for the
https: protocol definition. Default is blank, disabling secure access.

SecureURL https://machine.com/xyzcorp/cgi-bin/vlink

26.74. SendMailProgram

The location of the sendmail binary, needed for mailing orders. Must be found at startup. This often needs tc
be set for FreeBSD or BSDI.

SendMailProgram /usr/sbin/sendmail

If set to none, no mail can be sent by standard Interchange facilities. The default is the value in
interchange.cfg and varies depending on operating system.

26.75. Separateltems

Changes the default when ordering an item via Interchange to allowing multiple lines on the order form for
each item. The default, No, puts all orders with the same part number on the same line.

Setting Separateltems to Yes allows the item attributes to be easily set for different instances of the
same part number, allowing easy setting of things such as size or color.

Separateltems Yes

Can be overridden with the mv_separate_items variables (both scratch and values).

26.76. SessionDatabase

When storing sessions, specify the name of the directory or DBM file to use. The file extensions of .db or
.gdbm (depending on the DBM implementation used) will be appended. If the default file—based sessions ar
used, it is the name of the directory.

SessionDatabase session—data
Can be an absolute path name, if desired.
It is possible for multiple catalogs to share the same session file, as well as for multiple Interchange servers

serve the same catalogs. If serving a extremely busy store, multiple parallel Interchange servers can share 1
same NFS-based file system and serve users in a "ping—pong" fashion using the file—based sessions. On h

26.73. SecureURL 101

Interchange Documentation (Full)

systems, the level of directory hashing may be changed. By default, only 48 * 48 hashing is done. See the
source for SessionFile.pm.

26.77. SessionDB

The name of the Interchange database to be used for sessions if DBI is specified as the session type. This i
not recommended.

26.78. SessionExpire

A customer can exit the browser or leave the catalog pages at any time, and no indication is given to the we
server aside from the lack of further requests that have the same session ID. Old session information needs
be periodically expired. The SessionExpire specifies the minimum time to keep track of session

information. Defaults to one day. Format is an integer number, followed by s(econds), m(inutes), h(ours),
d(ays), or w(eeks).

SessionExpire 20 minutes
If CookieLogin is in use, this can be a small value. If the customer's browser has the Interchange session

cookie stored, he/she will be automatically logged back in with the next request. Note, however, that the
customer's cart and session values will be reset.

26.79. SessionLockFile

The file to use for locking coordination of the sessions.

SessionLockFile session—data.lock

This only applies when using DBM-based sessions. It is possible for multiple catalogs to share the same
session file. SessionDatabase needs to be set appropriately if the database is to be shared. Defaults to
session.lock, which is appropriate for separate session files (and therefore standalone catalogs). Can be
an absolute path name, if desired.

26.80. SessionType

The type of session management to be used. Use one of the following:

DB_File Berkeley DB

DBI DBI (don't use this, normally)
File File—based sessions (the default)
NFS File-based sessions, forces use of fcntl locking

GDBM GDBM
The default is file—based sessions, which provides the best performance and reliablility in most environment

If you are planning on running Interchange servers with an NFS—-mounted filesystem as the session target,
must set SessionType to "NFS". The other requisites are usually:

1. fentl() supported in Perl 2. lock daemon running on NFS server system 3. lock daemon running on
Interchange server

26.77. SessionDB 102

Interchange Documentation (Full)

See also the global directive LockType.

26.81. SpecialPage

Sets a special page to other than its default value. Can be set as many times as necessary. Will have no eff
if not one of the Interchange Required Pages.

SpecialPage checkout ord/checkout

SpecialPage failed special/error_on_order
SpecialPage interact special/browser_problem
SpecialPage noproduct special/no_product_found
SpecialPage order ord/basket

SpecialPage search srch/results

26.82. SpecialPageDir

The directory where special pages are kept. Defaults to special_pages in the catalog directory.

SpecialPageDir pages/special

26.83. Static

A Yes/No directive. Enables static page building and display features. Default is No.

Static Yes

26.84. StaticAll

A Yes/No directive. Tells Interchange to try and build all pages in the catalog statically when called with the
static page build option. This is subject to the settings of StaticFly, StaticPath, and NoCache.

Default is No. Pages that have dynamic elements will not be built statically, though that may be overridden
with [tag flag build][/tag] on the page in question.

StaticAll Yes

26.85. StaticDepth

The number of levels of static search building that will be done if a search results page contains a search.
Default is one, though it could be very long if set higher. Set to 0 to disable re-scanning of search results
pages.

StaticDepth 2

26.86. StaticDir

The absolute path of the directory which should be used as the root for static pages. The user ID executing
Interchange must have write permission on the directory (and all files within) if this is to work.

StaticDir /home/you/www/catalog

26.81. SpecialPage 103

Interchange Documentation (Full)

26.87. StaticFly

A Yes/No directive. If set to Yes, static builds will attempt to generate a page for every part number in the
database using the on—-the—fly page build capability. If pages are already present with those names, they wi
be overwritten. The default is No.

StaticFly Yes

26.88. StaticPage

Tells Interchange to build the named page (or pages, whitespace separated) when employing the static
page-building capability of Interchange. Not necessary if using StaticAll.

StaticPage info/about_us info/terms_and_conditions

26.89. StaticPath

The path (relative to HTTP document root) which should be used in pages built with the static page—building
capability of Interchange.

StaticPath /catalog

26.90. StaticPattern

A perl regular expression which is used to qualify pages that are to be built statically. The default is blank,
which means all pages qualify.

StaticPattern “info|*help

26.91. StaticSuffix

The extension to be appended to a normal Interchange page name when building statically. Default is .html.
Also affects the name of pages in the Interchange page directory. If set to .htm, the pages must be named
with that extension.

StaticSuffix .htm

26.92. Sub

Defines a catalog subroutine for use by the [perl][/perl] or [mvasp] embedded perl languages. Use the
"here document" capability of Interchange configuration files to make it easy to define:

Sub <<EOF
sub sort_cart_by_quantity {
my($items) = @_;
$items = $ltems if ! $items;
my $out = '<TABLE BORDER=1>";
@$items = sort { $a—>{quantity} <=> $b->{quantity} } @S$items;
foreach $item (@$items) {
my $code = $item->{code};

26.87. StaticFly 104

Interchange Documentation (Full)

$out .= '<TR><TD>';

$out .= $code;

$out .= '</TD><TD>";

$out .= $Tag—>data(‘products’, 'name’, $code);
$out .= '</TD><TD>";

$out .= $Tag—>data('products’, 'price’, $code);
$out .= '</TD></TR>";

}
$out .= '&It/TABLE>",

return $out;

}
EOF

As with Perl "here documents," the EOF (or other end marker) must be the ONLY thing on the line, with no
leading or trailing white space. Do not append a semicolon to the marker. The above would be called with:

[perl]
my $cart = $Carts—>{main};
return sort_cart($cart);
[/perl]

and will display an HTML table of the items in the current shopping cart, sorted by the quantity. Syntax error
will be reported at catalog startup time.

Catalog subroutines may not perform unsafe operations. The Safe.pm module enforces this unless global
operations are allowed for the catalog. See AllowGlobal.

26.93. Suggests

Generates a warning message when a Perl module, global UserTag, or GlobalSub is not present at catalog
configuration time. Same as the Require directive except not fatal.

Suggest usertag table_editor
Suggest globalsub file_info
Suggest module Business::UPS

26.94. TableRestrict

Used to provide "views" in database—based searches. Does not affect the text searches. Affects the table be
searched.

Takes the form of field=session_param, where field is a column in the table being iterated over, and
session_param is a $Session key (i.e., [data session username]).

TableRestrict products owner=username

The above would prevent the database search from returning any records except those where the column
owner contains the current value of [data session username].

Probably most usefully set by embedded Perl code in certain situations. For example:

[calc]
Restrict edit to owned fields
$Config—>{TableRestrict{{products} = ‘'owner=username’;

26.93. Suggests 105

Interchange Documentation (Full)

return;
[/calc]

When using SQL-based databases, in effect it turns the base search query
select * from products

into
select * from products where owner = '[data session username]'

Interchange databases are similarly affected, though the methodology is different. Also may be useful in
"mall" situations, where user is allowed to only see products from the current store ID.

26.95. TaxShipping

A comma or space—separated list of states or jurisdictions that tax shipping cost, i.e., UT. Blank by default,
never taxing shipping.

TaxShipping UT,NV,94024

26.96. TrackFile

Name of a lodfile that tracks user traffic. This is used in the back office administration report on traffic by
affiliate.

The default is that no such file is kept.

26.97. UpsZoneFile

The file containing the UPS zone information, specified relative to the catalog directory unless it begins with
/. It can be in the format distributed by UPS or can be in a tab—delimited format, with the three-letter zip
prefix of the customer used to determine the zone. It interpolates based on the value in mv_shipmode. A
user database named the same as the mv_shipmode variable must be present or the lookup will return zerg

IMPORTANT NOTE: Zone information and updated pricing from UPS must be obtained in order for this to
work properly. The zone information is specific to a region!

UpsZoneFile lusrl/interchange/data/ups_zone.asc

26.98. UseModifier

Determines whether any attributes, the modifiers specified in the directive, can be attached to the item. See
Item Attributes. The default is no modifier. Don't use a value of quantity or this directive will not
work properly.

UseModifier size,color

Some values are used by Interchange and are not legal:

26.95. TaxShipping 106

Interchange Documentation (Full)

mv_mi
mv_si
mv_ib
group
code
quantity
item

26.99. ValuesDefault

Sets the initial state of the user values, i.e., [value key] or $Values—>{key}.

ValuesDefault fname New
ValuesDefault Iname User

When the user session starts, [value fname] [value Iname] will be "New User."

26.100. Variable

Defines a catalog variable that will be available in the current catalog with the notation __ Variable .
Variable identifiers must begin with a capital letter, and can contain only word characters (A-Z,a-z,0-9 and
underscore). These are substituted second (right after global Variables) in any Interchange page, and can
contain any valid Interchange tags except global variables.

Variable DOCUMENT_ROOT /usr/local/etc/httpd/htdocs

26.101. VariableDatabase

The name of a database containing a field Variable which will be used to set Interchange variable values. F
example, a database defined as:

Database var var.txt TAB
VariableDatabase var

and containing

code Variable
HELLO Hi!

would cause _ HELLO__ to appear as Hi!.

The field name is case-sensitive, and variable would not work.

The values are inserted at time of definition. Any single—level hash-oriented Interchange directive, such as
SpecialPage, ScratchDefault, or ValuesDefault, can be set in the same way. If the

VariableDatabase named does not exist at definition time, a database of the default type with an ASCII
file source appending .txt is assumed. In other words:

VariableDatabase variable

is equivalent to

26.99. ValuesDefault 107

Interchange Documentation (Full)

Database variable variable.txt TAB
VariableDatabase variable

26.102. VendURL

Specifies the base URL that will run vlink as a cgi—bin program.

VendURL http://machine.company.com/cgi—bin/vlink

26.103. WideOpen

Disables IP qualification of user sessions. This degrades catalog security. Do not use unless using
encryption or a real-time payment gateway. line:

26.102. VendURL 108

Foundation Store

Foundation Store 109

27. The Foundation Store

The Foundation store is distributed with Interchange to give you a starting point with which to build your
e-business. While the Foundation store is designed to be relatively easy to start with, it is still a full-featurec
demonstration of a number of Interchange capabilities. Once you understand the Foundation store and how
works you are well on your way to understanding the Interchange software.

The following is a list of some popular features:

Category Searches

Regardless of the number of products in a catalog, categorizing them makes them easier to find. Pick a fielc
the database, typically named category, and classify the products for search using Interchange.

Images

You can display a thumbnail image for the items that have images. To do this, add an image field in the
database. (See the 'image' field of the products database.)

Related Items

You can embed searches of similar products on an individual product display page with the [query ...]
or [loop ...] tags. Or, if customer data is developed, search a past order database and display products
that would be of interest to that customer.

Reviews/Testimonials

You can key the placement of a review or testimonial on the existence of a file being in a certain directory.
This is reasonable to do when a user is viewing a single product.

27. The Foundation Store 110

28. Tree design

By determining how users will enter and exit the catalog, complex and intelligent conditional schemes are
possible, especially if the Cookies capability is exercised. However, it is recommended that simplicity be
used. Consumers will not make purchases if they can't navigate their way around the catalog.

It is important to remember that users will lose their session (and items in their shopping cart) if their browse
does not accept cookies and they leave the site. Interchange addresses this problem by using the area and
page tags. If you are using frames, source all frame panes containing Interchange links from an initial page

served by Interchange. If you don't do this, the user may have multiple session IDs depending on which fran
generated the link.

Note that Interchange can work properly even if the browser doesn't store cookies. In this situation

Interchange inserts a session ID into each URL; if the ID is preserved as the user navigates from page to pe
the session will remain intact.

28. Tree design 111

29. The Catalog Directory

Interchange pages are contained in the catalog directory. Each individual catalog has its own base directory
The catalog directory has the following structure by default:

catalog.cfg

File containing configuration directives for a particular catalog. Configuration settings established in the
catalog.cfg directory will not effect any other catalogs running under the version of Interchange you are usin
Subcatalogs can have differing information in a file named for that subcatalog.

config

Directory that will be read when directives are set with the filename notation. For example, the file

config/static.pages will be read when the following directive is encountered in the catalog.cfg
file.

StaticPage <static.pages
This directory also contains template information used with the makecat program.
error.log

File which contains catalog—specific errors. It is also where any syntax errors in embedded Perl code are
shown.

etc
Directory normally used for tracking files, order profiles, and other configuration and log information.
pages

Directory that contains the pages of the catalog. This can be considered to be the "document root" of the
catalog. Pages contained therein are called with the path information after the script name. For example:

/cgi—-bin/simple/products/gold will call the page in the file
pages/products/gold.html.

products

Directory that contains database source files, including the special Interchange databases shipping.asc,
pricing.asc (and other shipping database files).

session
Directory that contains session files.
tmp

The temporary or scratch directory used for various storage reasons, like retired ID numbers, search paging

29. The Catalog Directory 112

Interchange Documentation (Full)

files, sort tests, import temporary files, etc. This is the default set by ScratchDir. It can be redefined to be
located on another partition.

29. The Catalog Directory 113

30. Page Templates

This section describes the files located in the Foundation demo.

30.1. Template File Locations

This diagram shows the directory and file structure used for the default Foundation 'templates' directory. The
base will be a directory with the name of your catalog, here called CATROOT.

CATROOT/
I
|-——-templates/
|-———cart
|-———components/
|-———affiliate_receptor
|-———best_horizontal
|-———best_vertical
|-———cart
|-——-cart_display
|-———cart_tiny
|-———category_vertical
|-——-cross_horizontal
|-——-cross_vertical
|-———modular_buy
|-———modular_update
|-———none
|-———promo
|-——=promo_horizontal
|-———promo_vertical
|-——-random
|-——-random_horizontal
|-——-random_vertical
|-——-saved_carts_list_small
|-——-search_box_small
|-———upsell
|-——-upsell_horizontal
|-——-upsell_vertical
|-——-default ——> foundation
|-——-foundation/
|-———cart
|-———fullwidth
|-——-leftonly
|-——-leftright
|-——-regions/
|-——-LEFTONLY_BOTTOM
|-——-LEFTONLY_TOP
|-——-LEFTRIGHT_BOTTOM
|-——-LEFTRIGHT_TOP
|-———NOLEFT_BOTTOM
|-———-NOLEFT_TOP
|-——-simple
|-——-theme.cfg
|-———fullwidth
|-——-leftonly
|-——-leftright
|-——-regions/
|-——-LEFTONLY_BOTTOM
|-——-LEFTONLY_TOP

30. Page Templates 114

|-——-LEFTRIGHT_BOTTOM
|-——-LEFTRIGHT_TOP
|-——-NOLEFT_BOTTOM
|-———NOLEFT_TOP
|-———sampledata/
|-———computers/
|-——-images/
|-——-items/
|-———generic.gif

Interchange Documentation (Full)

|-———gift_certificate_large.gif

|-——-yourimage.qif
|-——-thumb/

|-——-generic_thumb.gif
|--——qgift_certificate.gif

|-———thumb.gif
|-———products/
|-——=inventory.txt
|-———merchandising.txt
|-———mv_metadata.asc
|-——-options.txt
|-———pricing.txt
|-——-products.txt
|-——-userdb.txt
|-——-reports/
|-——-download/
|-—--00352as.pdf
|-——-11993ab.pdf
|-———22083da.pdf
|-——-49503cg.pdf
|-—--59330rt.pdf
|-——-59402fw.pdf
|-—--66548ch.pdf
|-——-73358ee.pdf
|-———-83491vp.pdf
|-—--90773sh.pdf
|-———products/
|-———mv_metadata.asc
|-———products.txt
|-——-userdb.txt
|-——-tools/
|————etc/
|-——-after.cfg
|-——-before.cfg
|-——-images/
|-——-items/
|-—--0s28004.gif
|-—--0s28005.gif
|-—--0s28006.gif
|-—--0s28007.gif
|-—--0s28008.gif
|-—--0s28009.gif
|-——-0s28011.gif
|-——-0s28044.gif
|-——-0s28057a.gif
|-——-0s28057b.gif
|-—--0s28057c.gif
|-—--0s28062.gif
|-——-0s28064.gif
|-——-0s28065.gif
|-——-0s28066.gif
|-—--0s28068.gif
|-——-0s28068a.gif

30. Page Templates

115

Interchange Documentation (Full)

|-———0s28068b.gif
|-———0s28069.gif
|-—--0s28070.gif
|-—--0s28072.gif
|-—--0s28073.gif
|-——-0s28074.gif
|-—--0s28075.gif
|-—--0s28076.gif
|-—--0s28077.gif
|-———0s28080.gif
|-—--0s28081.gif
|-—--0s28082.gif
|-—--0s28084.gif
|-———0s28085.gif
|-———0s28086.gif
|-—--0s28087.gif
|-—--0s28108.gif
|-—--0s28109.gif
|-—--0s28110.gif
|-——-0s28111.gif
|-—--0s28112.gif
|-—--0s28113.gif
|-———0s29000.gif
|-——=thumb/
|-———gift_certificate.gif
|-——-0s28004_b.gif
|-———0s28005_b.gif
|-———0s28006_b.gif
|-——-0s28007_b.gif
|-———0s28008_b.gif
|--——0s28009_b.gif
|-——-0s28011_b.gif
|-——-0s28044_b.gif
|-——-0s28057a_b.gif
|-——-0s28057b_b.gif
|-———0s28057c_b.qgif
|-——-0s28062_b.gif
|-——-0s28064_b.gif
|-———0s28065_b.gif
|-———0s28066_b.gif
|-———0s28068_b.gif
|--——0s28068a_b.gif
|-———0s28068b_b.gif
|-———0s28069_b.gif
|-——-0s28070_b.gif
|-——-0s28072_b.gif
|-——-0s28073_b.gif
|-——-0s28074_b.gif
|-——-0s28075_b.gif
|-——-0s28076_b.gif
|-——-0s28077_b.gif
|-———0s28080_b.gif
|-——-0s28081_b.gif
|-——-0s28082_b.gif
|-——-0s28084_b.gif
|-———0s28085_b.gif
|-———0s28086_b.gif
|-——-0s28087_b.gif
|-——-0s28108_b.gif
|-——-0s28109_b.gif
|-——-0s28110_b.gif
|-———0s28111_b.gif

30. Page Templates 116

Interchange Documentation (Full)

|-———0s28112_b.gif

|-—--0s28113_b.gif

|-—--0s29000_b.gif

|-———products/

|-———affiliate.txt
|-———area.txt
|-———cat.txt
|-———inventory.txt
|-———merchandising.txt
|-———mv_metadata.asc
|-———options.txt
|-———orderline.txt
|-———pricing.txt
|-———products.txt
|-——-transactions.txt
|-——-userdb.txt

30.2. Themes

This section explains how themes are defined in Interchange via the STYLE variable and the theme
configuration file, theme.cfg.

30.2.1. STYLE

The STYLE variable in CATROOT/products/variable.txt indicates the template style to be used as the theme
for the catalog; the appropriate templates for that theme are found in CATROOT/templates/ _STYLE__ /. (T
change the value of the STYLE variable, either edit variable.txt directly or use the table editor feature of the
admin interface.)

The default theme for Interchange is the Foundation demo; hence, the STYLE variable is assigned the value
'Foundation' in variable.txt. The theme is defined in catalog.cfg as follows (line numbers added):

Here we set up the catalog theme.
1 ParseVariables Yes
2 ifndef STYLE
3 Variable STYLE default

4 endif
5 include templates/__STYLE__/theme.cfg

Variables that make up the look and feel of the STYLE (theme) are defined in the file
CATROOT/templates/foundation/theme.cfg, which is read by Interchange in line 5 above.

30.2.2. theme.cfg

The file CATROOT/templates/foundation/theme.cfg serves three purposes:
1. It defines the THEME and THEME_IMG_DIR variables,
2.1t defines a cascading style sheet for the theme, and
3. It defines the location of region templates according to the traffic settings for the Interchange daemol

The THEME variable is used to set the location of the region templates in the traffic settings section of the
theme.cfq file. It is also used in the cart template definition file (CATROOT/templates/cart) to set the path of

30.2. Themes 117

Interchange Documentation (Full)

an image. The THEME_IMG_DIR variable is used to set image paths in the template region files and the
template component files.

The look and feel of the Foundation theme are defined primarily in the cascading style sheet specified in the
theme.cfq file. This

The Interchange TRAFFIC setting, defined system-wide in interchange.cfg, is described in the
??document??. The settings in theme.cfg pertain to the location of region templates for the high and low
traffic settings. For example, if you need to define a separate set of high traffic templates, you would change
the ConfigDir variable in theme.cfg to point to the directory containing those templates.

30.3. Template Definition Files

The template definition files store the name and description of the template as well as components and optic
for that template.

templates/cart
templates/fullwidth
templates/leftonly
templates/leftright

templates/foundation/cart
templates/foundation/fullwidth
templates/foundation/leftonly
templates/foundation/leftright
templates/foundation/simple

30.3.1. Template Walkthrough —— leftonly

This section is best read while viewing the file CATROOT/templates/leftonly and the 'Edit Page' page in the
Content Editor of the Interchange Administration Tool.

Looking at the example template definition file, all lines located between the [comment] and [/comment] tags
(lines 1 and 53) control what is available in the Edit Page screen of the Administration Tool.

Lines 2-5: Template specification

2 ui_template: Yes

3 ui_template_name: leftonly

4 vui_template_layout: LEFTONLY_TOP, UI_CONTENT, LEFTONLY_BOTTOM
5 ui_template_description: Page with top/left areas.

Line 2 indicates that this file is a template for the user interface. Line 3 names the template, while Line 4
indicates the regions that comprise the template and that will eventually make up the new page that is creat
from the template. Line 5 provides a description used to identify the template when it appears in a Select
Template pull-down menu on the Edit Page of the Administration Tool. This description can be changed or
modified to better describe a new template or a template that is created from the stock templates provided w
Interchange.

Lines 7-8: Break

7 break:
8 widget: break

30.3. Template Definition Files 118

Interchange Documentation (Full)

This code creates a separation line in the Edit Page between sets of options. In the default Interchange
installation the line is grey, but the color can be changed. Note —— Changing this color applies the change to
any catalog served by Interchange.

Lines 10-11: Page Title

10 page_title:
11 description: Page title

This code tells Interchange to display a text field on the Edit Page for entering the page title (‘'Title of New
Page' in this example). The value entered is assigned to the scratch variable page_title and is set as a defa
value at the bottom of the template definition file using the following ITL:

54 [set page_title][set]
which, in turn, sets the scratch variable on the new page using the tag
[set page_title]Title of New Page[set]

The scratch variable page_title is parsed by the following code in the region template specified in the temple
definition file and called in the new page:

<title>[scratch page_title]</title>
Lines 13-15: Page Banner

13 page_banner:
14 description: Page banner
15 help: Defaults to page title

Assigns a textual title for the page to the scratch variable page_banner, which is assigned by the following
ITL:

55 [set page_banner][set]

The scratch variable page_banner is set on the new page using the tag
[set page_banner]Banner of New Page[set]

The scratch variable can be parsed in the region template by this code:

[either]

[scratch page_banner]
[or]

[scratch page_title]
[feither]

This results in the page banner being displayed if defined. Otherwise, the page title is used.

Lines 17-20: Members Only

17 members_only:
18 options: 1=Yes,0=No*
19 widget: radio

30.3. Template Definition Files 119

Interchange Documentation (Full)

20 description: Members only

This creates a radio—button form element on the Edit Page with the user can specify whether the page can |
accessed if a visitor is logged in (Yes) or not (No). The default is indicated by an asterisk.

The scratch variable members_only is assigned by the ITL code

56 [set members_only][set]

and set on the new page using the tag

[set members_only]O[/set]

if the page can be accessed without logging in or

[set members_only]1[/set]
if it can not.

The members_only function is handled by the following code within each region template file:

[if scratch members_only]
[set members_only][/set]
[if Isession logged_in]
[set mv_successpage]@ @MV_PAGE@ @][/set]
[bounce page=login]
[/if]
[/if]

This code says that if "members only" is set to yes, and the visitor is logged in, to display the page. Otherwis
redirect the visitor to the login page.

Lines 22-23: Break

22 breakl:
23 widget: break

Another separation line.

Lines 25-28: Horizontal Before Component

25 component_before:

26 options: =none, best_horizontal=Best Sellers, cross_horizontal=Cross sell, \
promo_horizontal=Promotion, random_horizontal=Random items, \
upsell_horizontal=Upsell

27 widget: select

28 description: Component before content

This allows the inclusion of a defined component (included in the CATROOT/templates/components
directory) to be displayed before, or above, the page's content. It provides a pull-down menu on the Edit Pa
displaying the available components. The components, identified here on line 26, can be assigned a name \
the value=name convention.

The scratch variable component_before is assigned in the template definition file by the ITL code

30.3. Template Definition Files 120

Interchange Documentation (Full)

57 [set component_before][set]

It is called with the following code within the LEFTRIGHT_TOP, LEFTONLY_TOP, and NOLEFT_TOP
region templates:

[if scratch component_before]
[include file="templates/components/[scratch component_before]"]

[/if]
Lines 30-33: Horizontal After Component

30 component_after:

31 options: =none, best_horizontal=Best Sellers, cross_horizontal=Cross sell, \
promo_horizontal=Promotion, random_horizontal=Random items, \
upsell_horizontal=Upsell

32 widget: select

33 description: Component after content

Similar to component_before, this allows the inclusion of a defined component after, or below, the page's
content.

The scratch variable component_before is assigned in the template definition file by the ITL code

58 [set component_after][set]

It is called with the following code within the LEFTRIGHT _BOTTOM and LEFTONLY_BOTTOM region
templates:

[if scratch component_after]
[include file="templates/components/[scratch component_after]"]

[/if]
Lines 35—-38: Horizontal Item Width

35 component_hsize:

36 options: 1,2,3*

37 widget: select

38 description: Component items horizontal

This setting allows you to choose how many items the horizontal components display. For example, the
horizontal best sellers component ("best_horizontal") uses this setting to randomly select the best sellers.
Notice the default is 3 if hothing is defined. It is called by the following code in the promo_horizontal and
random_horizontal components in the Foundation demo.

random="[either][scratch component_hsize][or]2[/either]"

Lines 40-45: Before/After Banner

40 hbanner:

41 options: =——custom--, Also see..., Best Sellers, New items, \
Some of our fine products, Specials, You might also like

42 widget: move_combo

43 width: 40

44 description: Before/after Banner

45 help: Banner for Before/after component

30.3. Template Definition Files 121

Interchange Documentation (Full)

Allows a title for the horizontal components to be defined to be displayed in a header above the component'
items. It is called with the [scratch hbanner] tag and used in the Foundation demo in the random_horizontal
component.

Lines 47-51: Special Tag

47 hpromo_type:

48 options: specials=Specials, new=New items
49 widget: select

50 description: Special tag

51 help: Only for a horizontal Promotion

This setting is only viable when a promotion is used for a horizontal component. It tells the promotional
component which row(s) to evaluate in the merchandising table for display within the component. This
setting, used in the promo_horizontal component, typically correlates to the featured column of the
merchandising table as follows:

[query arrayref=main
sql="
SELECT sku,timed_promotion,start_date,finish_date
FROM merchandising
WHERE featured = '[scratch hpromo_type]'

]
[/query]

30.4. Edit Page Function

Creating a page with the following specifications using the Edit Page function results in the HTML and ITL
code displayed below.

Specifications:

Template: Page with top/left areas.
Page title: test

Page banner: test

Members only: No

Component before content: Best Sellers
Component after content: Random items
Component items horizontal: 3

Before/after Banner: New items
Special tag: Specials
Content: <P>My first HTML/ITL page!

Resulting code:

[comment]

ui_template: Yes
ui_template_name: leftonly
[fcomment]

[set hbanner]New items][/set]
[set page_title]test[/set]

[set hpromo_type]specials[/set]
[set component_hsize]3[/set]
[set page_banner]test[/set]
[set members_only]0[/set]

30.4. Edit Page Function 122

Interchange Documentation (Full)

[set component_before]best_horizontal[/set]
[set component_afterrandom_horizontal[/set]
@_LEFTONLY_TOP_@

<!-— BEGIN CONTENT ——>
<P>My first HTML/ITL page!
<!-— END CONTENT -->

@_LEFTONLY_BOTTOM_@

An important point demonstrated here is the inclusion of the region templates LEFTONLY_TOP and
LEFTONLY_BOTTOM through the @_VARIABLE_NAME_@ notation. These are included because of line
4 of the leftonly template definition file:

4 ui_template_layout: LEFTONLY_TOP, Ul_CONTENT, LEFTONLY_BOTTOM

However, understand that you are free to change the region templates used in the file by editing the file itse
or, better yet, using an existing region as a starting point for a region of your own design.

The next section explains the structure of region templates.

30.5. Region Templates

Interchange region templates (or "regions") are portions of HTML and ITL that are included in pages within
catalog. Using regions, along with the cascading style sheet defined in theme.cfg, allows you to control the
look and feel of specific parts of each catalog page.

The default Foundation region set, found in CATROOT/templates/foundation/regions, includes the following

LEFTONLY_TOP
LEFTONLY_BOTTOM
LEFTRIGHT_TOP
LEFTRIGHT_BOTTOM
NOLEFT_TOP
NOLEFT_BOTTOM

The Foundation demo uses the Variable feature extensively to simplify hand page editing. Basically, a
Variable is a define that permits the substitution of text for a simple _ VARIABLE___ string in a page. For
example, in the test page above, the variables LEFTONLY_TOP and LEFTONLY_BOTTOM correspond to
region templates that provide a logobar, menubar, leftside menu, and copyright footer. Content, consisting ©
HTML and ITL, is placed within the BEGIN and END CONTENT comments. The following illustration

shows how this looks on the page:

LOGOBAR |

MENUBAR |

I

I

I

I I I
I I I
I I I

| LEFTSIDE | This is your content
I I I
I I I
I I I

30.5. Region Templates 123

Interchange Documentation (Full)

| COPYRIGHT

In this diagram, LEFTONLY_TOP contributes the LEFTSIDE, LOGOBAR, and MENUBAR sections, while
LEFTONLY_BOTTOM contributes the COPYRIGHT section.

The following subsections provide an inventory of where each of the region templates, included with the
Foundation demo, are used in the pages and template definition files that make up the catalog.

30.5.1. LEFTONLY_TOP

The LEFTONLY_TOP template region is used in the following template pages:

pages/aboutus.html
pages/account.html
pages/affiliate/index.html
pages/affiliate/login.html
pages/canceled.html
pages/contact.html
pages/customerservice.html
pages/flypage.html
pages/help.html
pages/login.html
pages/logout.html
pages/modular_modify.html
pages/new_account.html
pages/ord/basket.html
pages/privacypolicy.html
pages/process_return.html
pages/quantity.html
pages/query/check_orders.html
pages/query/order_detail.html
pages/query/order_return.html
pages/returns.html
pages/saved_carts.html
pages/ship_addresses.html
pages/ship_addresses_added.html
pages/ship_addresses_removed.html
pages/stock-alert—added.html
pages/stock-alert.html

The LEFTONLY_TOP template region is used in the following templates:

templates/foundation/cart
templates/foundation/leftonly
templates/foundation/simple

30.5.1.1. Region Template Walkthrough —— LEFTONLY_TOP

1 <!-- BEGIN LEFTONLY_TOP ——>

2 [if scratch members_only]

3 [set members_only][/set]

4 [if Isession logged_in]

5 [set mv_successpage]@ @MV_PAGE@ @][/set]
6 [bounce page=login]

7 [hf]

8 [/if]

30.5.1. LEFTONLY_TOP 124

Interchange Documentation (Full)

10 <html>

11 <head>

12 <title>[scratch page_title]</title>

13 _ THEME_CSS__

14 </head>

15

16 <body marginheight="0" marginwidth="0">

17

18 <!-—-top left and right logo ———>

19 <table width="100%" border="0" cellspacing="0" cellpadding="0">

20 <tr>

21 <td align="left" valign="middle" class="maincontent">

22

23 </td>

24 <td align="right" valign="middle" class="maincontent">

25
26 </td>

27 <htr>

28 </table>

29

30 <!---menu bar along the top ———>

31 <table width="100%" border="0" cellspacing="0" cellpadding="0">

32 <tr>

33 <td width="100%" class="menubar">

34
35

36

37 [if session logged_in]

38

39 [else]

40
41 [lelse]

42 [fif]

43

44

45

46

47

48
49

50

51 </td>

52 </tr>

53 </table>

54

55 <I--- left category column, main content column, and right special column ———>
56 <table width="100%" border="0" cellspacing="0" cellpadding="0">

57 <tr>

58 <td width="20%" valign="top" align="Ieft" class="categorybar">

59 <I--Left Sidebar——>

60 <table width="100%" border="0" cellspacing="0" cellpadding="0">

61 [include file="templates/components/[control component none]"][control]
62 [include file="templates/components/[control component none]"][control]
63 [include file="templates/components/[control component none]"][control]
64 </table>

65 </td>

66 <td width="80%" valign="top" align="center" class="maincontent">

67 [include file="templates/components/[control component none]"][control]
68

30.5.1. LEFTONLY_TOP 125

Interchange Documentation (Full)

30.5.2. LEFTONLY_BOTTOM

The LEFTONLY_BOTTOM template region is used in the following template pages:

pages/aboutus.html
pages/account.html
pages/affiliate/index.html
pages/affiliate/login.html
pages/canceled.html
pages/contact.html
pages/customerservice.htmi
pages/flypage.html
pages/help.html
pages/login.html
pages/logout.html
pages/modular_modify.html
pages/new_account.html
pages/ord/basket.html
pages/privacypolicy.html
pages/process_return.html
pages/quantity.html
pages/query/check_orders.html
pages/query/order_detail.html
pages/query/order_return.html
pages/returns.html
pages/saved_carts.html
pages/ship_addresses.html
pages/ship_addresses_added.html
pages/ship_addresses_removed.html
pages/stock-alert—added.html
pages/stock-alert.html

The LEFTONLY_BOTTOM template region is used in the following templates:

templates/foundation/cart
templates/foundation/leftonly
templates/foundation/simple

30.5.3. LEFTRIGHT_TOP

The LEFTRIGHT_TOP template region is used in the following template pages:

pages/browse.html
pages/index.html
pages/results.html
pages/results_big.html
pages/swap_results.html

The LEFTRIGHT_TOP template region is used in the following templates:

templates/foundation/leftright

30.5.4. LEFTRIGHT_BOTTOM

The LEFTRIGHT_BOTTOM template region is used in the following template pages:
pages/browse.html

30.5.2. LEFTONLY_BOTTOM 126

Interchange Documentation (Full)

pages/index.html
pages/results.html
pages/results_big.html
pages/swap_results.html

The LEFTRIGHT_BOTTOM template region is used in the following templates:

templates/foundation/leftright

30.5.5. NOLEFT_BOTTOM

The NOLEFT_BOTTOM template region is used in the following template pages:

pages/ord/checkout.html
pages/splash.htmi

The NOLEFT_BOTTOM template region is used in the following templates:

templates/foundation/fullwidth

30.5.6. NOLEFT_TOP

The NOLEFT_TOP template region is used in the following template pages:

pages/ord/checkout.html
pages/splash.htmi

The NOLEFT_T